Skip to content
Snippets Groups Projects
Commit e900994b authored by Gamelin Alexis's avatar Gamelin Alexis
Browse files

Impedance : energy_loss method for ImpedanceModel + fix on beam_loss_factor

ImpedanceModel -> new method to compute beam and bunch energy loss
beam_loss_factor -> drop 0 from data only if it is there, avoid bug if it is not
parent c104e493
No related branches found
No related tags found
No related merge requests found
...@@ -385,7 +385,10 @@ def beam_loss_factor(impedance, frequency, spectrum, ring): ...@@ -385,7 +385,10 @@ def beam_loss_factor(impedance, frequency, spectrum, ring):
negative_index = impedance.data.index*-1 negative_index = impedance.data.index*-1
negative_data = impedance.data.set_index(negative_index) negative_data = impedance.data.set_index(negative_index)
negative_data["imag"] = -1*negative_data["imag"] negative_data["imag"] = -1*negative_data["imag"]
negative_data = negative_data.drop(0) try:
negative_data = negative_data.drop(0)
except KeyError:
pass
all_data = impedance.data.append(negative_data) all_data = impedance.data.append(negative_data)
all_data = all_data.sort_index() all_data = all_data.sort_index()
......
...@@ -738,4 +738,67 @@ class ImpedanceModel(Element): ...@@ -738,4 +738,67 @@ class ImpedanceModel(Element):
summary = pd.DataFrame(loss_array.T, index=attr_list, summary = pd.DataFrame(loss_array.T, index=attr_list,
columns=list_components) columns=list_components)
return summary return summary
def energy_loss(self, sigma, M, bunch_spacing, I, n_points=10e6):
"""
Compute the beam and bunch loss factor and energy losses for each type
of element in the model assuming Gaussian bunches and constant spacing
between bunches.
Parameters
----------
sigma : float
RMS bunch length in [s].
M : int
Number of bunches in the beam.
bunch_spacing : float
Time between two bunches in [s].
I : float
Total beam current in [A].
n_points : float, optional
Number of points used in the frequency spectrums.
Returns
-------
summary : Dataframe
Contains the beam and bunch loss factor and energy loss for the
full model and for each type of different component.
"""
fmax = self.sum.Zlong.data.index.max()
fmin = self.sum.Zlong.data.index.min()
Q = I*self.ring.T0/M
if fmin >= 0:
fmin = -1*fmax
f = np.linspace(fmin, fmax, int(n_points))
beam_spect = tools.beam_spectrum(f, M, bunch_spacing, sigma= sigma)
bunch_spect = tools.Gaussian_bunch_spectrum(f, sigma)
attr_list = self.sum_names
loss_array = np.zeros((len(attr_list),2))
for i, attr in enumerate(attr_list):
try:
impedance = getattr(getattr(self, attr), "Zlong")
loss_array[i,0] = tools.beam_loss_factor(impedance, f, beam_spect, self.ring)
loss_array[i,1] = tools.beam_loss_factor(impedance, f, bunch_spect, self.ring)
except AttributeError:
pass
loss_array = loss_array*1e-12
summary = pd.DataFrame(loss_array, index=attr_list,
columns=["loss factor (beam) [V/pC]", "loss factor (bunch) [V/pC]"])
summary["P (beam) [W]"] = summary["loss factor (beam) [V/pC]"]*1e12*Q**2/(self.ring.T0)
summary["P (bunch) [W]"] = summary["loss factor (bunch) [V/pC]"]*1e12*Q**2/(self.ring.T0)*M
return summary
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment