diff --git a/collective_effects/tools.py b/collective_effects/tools.py index 606db8b048577707c3eb2dc5a0f29629bf036516..44c0efc84bb475d8d23b34794ab52449bbcb2335 100644 --- a/collective_effects/tools.py +++ b/collective_effects/tools.py @@ -385,7 +385,10 @@ def beam_loss_factor(impedance, frequency, spectrum, ring): negative_index = impedance.data.index*-1 negative_data = impedance.data.set_index(negative_index) negative_data["imag"] = -1*negative_data["imag"] - negative_data = negative_data.drop(0) + try: + negative_data = negative_data.drop(0) + except KeyError: + pass all_data = impedance.data.append(negative_data) all_data = all_data.sort_index() diff --git a/collective_effects/wakefield.py b/collective_effects/wakefield.py index 015221e393fad2bc02ca85e7fea30f879b31848b..4994c4a7a07e53e3660fa20e0c76ed0163d018b6 100644 --- a/collective_effects/wakefield.py +++ b/collective_effects/wakefield.py @@ -738,4 +738,67 @@ class ImpedanceModel(Element): summary = pd.DataFrame(loss_array.T, index=attr_list, columns=list_components) return summary + + def energy_loss(self, sigma, M, bunch_spacing, I, n_points=10e6): + """ + Compute the beam and bunch loss factor and energy losses for each type + of element in the model assuming Gaussian bunches and constant spacing + between bunches. + + Parameters + ---------- + sigma : float + RMS bunch length in [s]. + M : int + Number of bunches in the beam. + bunch_spacing : float + Time between two bunches in [s]. + I : float + Total beam current in [A]. + n_points : float, optional + Number of points used in the frequency spectrums. + + Returns + ------- + summary : Dataframe + Contains the beam and bunch loss factor and energy loss for the + full model and for each type of different component. + + """ + + fmax = self.sum.Zlong.data.index.max() + fmin = self.sum.Zlong.data.index.min() + + Q = I*self.ring.T0/M + + if fmin >= 0: + fmin = -1*fmax + f = np.linspace(fmin, fmax, int(n_points)) + + beam_spect = tools.beam_spectrum(f, M, bunch_spacing, sigma= sigma) + + bunch_spect = tools.Gaussian_bunch_spectrum(f, sigma) + + attr_list = self.sum_names + + loss_array = np.zeros((len(attr_list),2)) + + for i, attr in enumerate(attr_list): + try: + impedance = getattr(getattr(self, attr), "Zlong") + loss_array[i,0] = tools.beam_loss_factor(impedance, f, beam_spect, self.ring) + loss_array[i,1] = tools.beam_loss_factor(impedance, f, bunch_spect, self.ring) + except AttributeError: + pass + + loss_array = loss_array*1e-12 + summary = pd.DataFrame(loss_array, index=attr_list, + columns=["loss factor (beam) [V/pC]", "loss factor (bunch) [V/pC]"]) + + summary["P (beam) [W]"] = summary["loss factor (beam) [V/pC]"]*1e12*Q**2/(self.ring.T0) + summary["P (bunch) [W]"] = summary["loss factor (bunch) [V/pC]"]*1e12*Q**2/(self.ring.T0)*M + + return summary + + \ No newline at end of file