Skip to content
Snippets Groups Projects
Commit ca01ff54 authored by Vadim Gubaidulin's avatar Vadim Gubaidulin
Browse files

- Added Chebyshev, Legenre and Sacherer modes

for spectral_density()
- Corrected Hermite mode to include normalisation by the mode number
- some authorefactoring
parent a6efc774
No related branches found
No related tags found
No related merge requests found
...@@ -4,12 +4,14 @@ Module where bunch and beam spectrums and profile are defined. ...@@ -4,12 +4,14 @@ Module where bunch and beam spectrums and profile are defined.
""" """
import numpy as np import numpy as np
from scipy.special import jv, spherical_jn
def spectral_density(frequency, sigma, m = 1, mode="Hermite"):
def spectral_density(frequency, sigma, m=1, k=0, mode="Hermite"):
""" """
Compute the spectral density of different modes for various values of the Compute the spectral density of different modes for various values of the
head-tail mode number, based on Table 1 p238 of [1]. head-tail mode number, based on Table 1 p238 of [1].
Parameters Parameters
---------- ----------
frequency : list or numpy array frequency : list or numpy array
...@@ -18,26 +20,43 @@ def spectral_density(frequency, sigma, m = 1, mode="Hermite"): ...@@ -18,26 +20,43 @@ def spectral_density(frequency, sigma, m = 1, mode="Hermite"):
RMS bunch length in [s] RMS bunch length in [s]
m : int, optional m : int, optional
head-tail (or azimutal/synchrotron) mode number head-tail (or azimutal/synchrotron) mode number
k : int, optional
radial mode number (such that |q|=m+2k, where |q| is the head-tail mode number)
mode: str, optional mode: str, optional
type of the mode taken into account for the computation: type of the mode taken into account for the computation:
-"Hermite" modes for Gaussian bunches -"Hermite" modes for Gaussian bunches (typical for electrons)
-"Chebyshev" for airbag bunches
-"Legendre" for parabolic bunches (typical for protons)
-"Sacherer" or "Sinusoidal" simplifying approximation of Legendre modes from [3]
Returns Returns
------- -------
numpy array numpy array
References References
---------- ----------
[1] : Handbook of accelerator physics and engineering, 3rd printing. [1] : Handbook of accelerator physics and engineering, 3rd printing.
[2] : Ng, K. Y. (2005). Physics of intensity dependent beam instabilities. WORLD SCIENTIFIC. https://doi.org/10.1142/5835
[3] : Sacherer, F. J. (1972). Methods for computing bunched beam instabilities. CERN Tech. rep. CERN/SI-BR/72-5 https://cds.cern.ch/record/2291670?ln=en
""" """
if mode == "Hermite": if mode == "Hermite":
return (2*np.pi*frequency*sigma)**(2*m)*np.exp( return 1/(np.math.factorial(m)*2**m)*(2*np.pi*frequency*sigma)**(2*m)*np.exp(
-1*(2*np.pi*frequency*sigma)**2) -(2*np.pi*frequency*sigma)**2)
elif mode == "Chebyshev":
tau_l = 4*sigma
return (jv(m, 2*np.pi*frequency*tau_l))**2
elif mode == "Legendre":
tau_l = 4*sigma
return (spherical_jn(m, np.abs(2*np.pi*frequency*tau_l)))**2
elif mode == "Sacherer" or mode == "Sinusoidal":
y = 4*2*np.pi*frequency*sigma/np.pi
return (2*(m+1)/np.pi*1/np.abs(y**2-(m+1)**2)*np.sqrt(1+(-1)**m*np.cos(np.pi*y)))**2
else: else:
raise NotImplementedError("Not implemanted yet.") raise NotImplementedError("Not implemanted yet.")
def gaussian_bunch_spectrum(frequency, sigma):
def gaussian_bunch_spectrum(frequency, sigma):
""" """
Compute a Gaussian bunch spectrum [1]. Compute a Gaussian bunch spectrum [1].
...@@ -52,7 +71,7 @@ def gaussian_bunch_spectrum(frequency, sigma): ...@@ -52,7 +71,7 @@ def gaussian_bunch_spectrum(frequency, sigma):
------- -------
bunch_spectrum : array bunch_spectrum : array
Bunch spectrum sampled at points given in frequency. Bunch spectrum sampled at points given in frequency.
References References
---------- ----------
[1] : Gamelin, A. (2018). Collective effects in a transient microbunching [1] : Gamelin, A. (2018). Collective effects in a transient microbunching
...@@ -60,7 +79,8 @@ def gaussian_bunch_spectrum(frequency, sigma): ...@@ -60,7 +79,8 @@ def gaussian_bunch_spectrum(frequency, sigma):
""" """
return np.exp(-1/2*(2*np.pi*frequency)**2*sigma**2) return np.exp(-1/2*(2*np.pi*frequency)**2*sigma**2)
def gaussian_bunch(time, sigma):
def gaussian_bunch(time, sigma):
""" """
Compute a Gaussian bunch profile. Compute a Gaussian bunch profile.
...@@ -77,10 +97,10 @@ def gaussian_bunch(time, sigma): ...@@ -77,10 +97,10 @@ def gaussian_bunch(time, sigma):
Bunch profile in [s**-1] sampled at points given in time. Bunch profile in [s**-1] sampled at points given in time.
""" """
return np.exp(-1/2*(time**2/sigma**2))/(sigma*np.sqrt(2*np.pi)) return np.exp(-1/2*(time**2/sigma**2))/(sigma*np.sqrt(2*np.pi))
def beam_spectrum(frequency, M, bunch_spacing, sigma=None, def beam_spectrum(frequency, M, bunch_spacing, sigma=None,
bunch_spectrum=None): bunch_spectrum=None):
""" """
Compute the beam spectrum assuming constant spacing between bunches [1]. Compute the beam spectrum assuming constant spacing between bunches [1].
...@@ -107,13 +127,13 @@ def beam_spectrum(frequency, M, bunch_spacing, sigma=None, ...@@ -107,13 +127,13 @@ def beam_spectrum(frequency, M, bunch_spacing, sigma=None,
[1] Rumolo, G - Beam Instabilities - CAS - CERN Accelerator School: [1] Rumolo, G - Beam Instabilities - CAS - CERN Accelerator School:
Advanced Accelerator Physics Course - 2014, Eq. 9 Advanced Accelerator Physics Course - 2014, Eq. 9
""" """
if bunch_spectrum is None: if bunch_spectrum is None:
bunch_spectrum = gaussian_bunch_spectrum(frequency, sigma) bunch_spectrum = gaussian_bunch_spectrum(frequency, sigma)
beam_spectrum = (bunch_spectrum * np.exp(1j*np.pi*frequency * beam_spectrum = (bunch_spectrum * np.exp(1j*np.pi*frequency *
bunch_spacing*(M-1)) * bunch_spacing*(M-1)) *
np.sin(M*np.pi*frequency*bunch_spacing) / np.sin(M*np.pi*frequency*bunch_spacing) /
np.sin(np.pi*frequency*bunch_spacing)) np.sin(np.pi*frequency*bunch_spacing))
return beam_spectrum return beam_spectrum
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment