Skip to content
Snippets Groups Projects
Commit 28edc112 authored by Alexis GAMELIN's avatar Alexis GAMELIN
Browse files

Merge branch 'faster2' into develop

parents b8017d80 060ec29e
No related branches found
No related tags found
No related merge requests found
...@@ -201,27 +201,29 @@ class TransverseMap(Element): ...@@ -201,27 +201,29 @@ class TransverseMap(Element):
self.adts_poly[1](Jx) + self.adts_poly[3](Jy)) self.adts_poly[1](Jx) + self.adts_poly[3](Jy))
# 6x6 matrix corresponding to (x, xp, delta, y, yp, delta) # 6x6 matrix corresponding to (x, xp, delta, y, yp, delta)
matrix = np.zeros((6, 6, len(bunch))) matrix = np.zeros((6, 6, len(bunch)), dtype=np.float64)
# Horizontal # Horizontal
matrix[0, 0, :] = np.cos( c_x = np.cos(phase_advance_x)
phase_advance_x) + self.alpha[0] * np.sin(phase_advance_x) s_x = np.sin(phase_advance_x)
matrix[0, 1, :] = self.beta[0] * np.sin(phase_advance_x)
matrix[0, 0, :] = c_x + self.alpha[0] * s_x
matrix[0, 1, :] = self.beta[0] * s_x
matrix[0, 2, :] = self.dispersion[0] matrix[0, 2, :] = self.dispersion[0]
matrix[1, 0, :] = -1 * self.gamma[0] * np.sin(phase_advance_x) matrix[1, 0, :] = -1 * self.gamma[0] * s_x
matrix[1, 1, :] = np.cos( matrix[1, 1, :] = c_x - self.alpha[0] * s_x
phase_advance_x) - self.alpha[0] * np.sin(phase_advance_x)
matrix[1, 2, :] = self.dispersion[1] matrix[1, 2, :] = self.dispersion[1]
matrix[2, 2, :] = 1 matrix[2, 2, :] = 1
# Vertical # Vertical
matrix[3, 3, :] = np.cos( c_y = np.cos(phase_advance_y)
phase_advance_y) + self.alpha[1] * np.sin(phase_advance_y) s_y = np.sin(phase_advance_y)
matrix[3, 4, :] = self.beta[1] * np.sin(phase_advance_y)
matrix[3, 3, :] = c_y + self.alpha[1] * s_y
matrix[3, 4, :] = self.beta[1] * s_y
matrix[3, 5, :] = self.dispersion[2] matrix[3, 5, :] = self.dispersion[2]
matrix[4, 3, :] = -1 * self.gamma[1] * np.sin(phase_advance_y) matrix[4, 3, :] = -1 * self.gamma[1] * s_y
matrix[4, 4, :] = np.cos( matrix[4, 4, :] = c_y - self.alpha[1] * s_y
phase_advance_y) - self.alpha[1] * np.sin(phase_advance_y)
matrix[4, 5, :] = self.dispersion[3] matrix[4, 5, :] = self.dispersion[3]
matrix[5, 5, :] = 1 matrix[5, 5, :] = 1
......
...@@ -128,11 +128,14 @@ class Bunch: ...@@ -128,11 +128,14 @@ class Bunch:
current = 0 current = 0
self._mp_number = int(mp_number) self._mp_number = int(mp_number)
self.dtype = np.dtype([('x', float), ('xp', float), ('y', float), self.particles = {
('yp', float), ('tau', float), "x": np.zeros(self.mp_number, dtype=np.float64),
('delta', float)]) "xp": np.zeros(self.mp_number, dtype=np.float64),
"y": np.zeros(self.mp_number, dtype=np.float64),
self.particles = np.zeros(self.mp_number, self.dtype) "yp": np.zeros(self.mp_number, dtype=np.float64),
"tau": np.zeros(self.mp_number, dtype=np.float64),
"delta": np.zeros(self.mp_number, dtype=np.float64),
}
self.track_alive = track_alive self.track_alive = track_alive
self.alive = np.ones((self.mp_number, ), dtype=bool) self.alive = np.ones((self.mp_number, ), dtype=bool)
self.current = current self.current = current
...@@ -144,7 +147,7 @@ class Bunch: ...@@ -144,7 +147,7 @@ class Bunch:
def __len__(self): def __len__(self):
"""Return the number of alive particles""" """Return the number of alive particles"""
return len(self[:]) return self.alive.sum()
def __getitem__(self, label): def __getitem__(self, label):
"""Return the columns label for alive particles""" """Return the columns label for alive particles"""
...@@ -162,11 +165,13 @@ class Bunch: ...@@ -162,11 +165,13 @@ class Bunch:
def __iter__(self): def __iter__(self):
"""Iterate over labels""" """Iterate over labels"""
return self.dtype.names.__iter__() return self.particles.keys().__iter__()
def __repr__(self): def __repr__(self):
"""Return representation of alive particles""" """Return representation of alive particles"""
return f'Bunch with macro-particles: \n {pd.DataFrame(self[:])!r}' rep = pd.DataFrame(np.array([self[l] for l in self.__iter__()]).T,
columns=list(self.__iter__()))
return f'Bunch with macro-particles: \n {rep!r}'
@property @property
def mp_number(self): def mp_number(self):
......
...@@ -33,6 +33,11 @@ class WakePotential(Element): ...@@ -33,6 +33,11 @@ class WakePotential(Element):
functions must be uniformly sampled! functions must be uniformly sampled!
n_bin : int, optional n_bin : int, optional
Number of bins for constructing the longitudinal bunch profile. Number of bins for constructing the longitudinal bunch profile.
interp_on_postion : bool, optional
If True, the computed wake potential is interpolated on the exact
particle location. If False, the wake potential is interpolated on the
bin center and each particle of the bin get the same value.
Default is True.
Attributes Attributes
---------- ----------
...@@ -71,13 +76,14 @@ class WakePotential(Element): ...@@ -71,13 +76,14 @@ class WakePotential(Element):
Reduce wake function samping by an integer factor. Reduce wake function samping by an integer factor.
""" """
def __init__(self, ring, wakefield, n_bin=80): def __init__(self, ring, wakefield, n_bin=80, interp_on_postion=True):
self.wakefield = wakefield self.wakefield = wakefield
self.types = self.wakefield.wake_components self.types = self.wakefield.wake_components
self.n_types = len(self.wakefield.wake_components) self.n_types = len(self.wakefield.wake_components)
self.ring = ring self.ring = ring
self.n_bin = n_bin self.n_bin = n_bin
self.check_sampling() self.check_sampling()
self.interp_on_postion = interp_on_postion
# Suppress numpy warning for floating-point operations. # Suppress numpy warning for floating-point operations.
np.seterr(invalid='ignore') np.seterr(invalid='ignore')
...@@ -110,18 +116,12 @@ class WakePotential(Element): ...@@ -110,18 +116,12 @@ class WakePotential(Element):
self.dtau = self.tau[1] - self.tau[0] self.dtau = self.tau[1] - self.tau[0]
# Add N values before and after rho and tau # Add N values before and after rho and tau
if self.n_bin % 2 == 0: N = int(self.n_bin / 2)
N = int(self.n_bin / 2) self.tau = np.arange(self.tau[0] - self.dtau * N,
self.tau = np.arange(self.tau[0] - self.dtau * N, self.tau[-1] + self.dtau * N, self.dtau)
self.tau[-1] + self.dtau * N, self.dtau) self.rho = np.pad(self.rho, (N, N + self.n_bin % 2),
self.rho = np.append(self.rho, np.zeros(N)) mode="constant",
self.rho = np.insert(self.rho, 0, np.zeros(N)) constant_values=(0, 0))
else:
N = int(np.floor(self.n_bin / 2))
self.tau = np.arange(self.tau[0] - self.dtau * N,
self.tau[-1] + self.dtau * (N+1), self.dtau)
self.rho = np.append(self.rho, np.zeros(N))
self.rho = np.insert(self.rho, 0, np.zeros(N + 1))
if len(self.tau) != len(self.rho): if len(self.tau) != len(self.rho):
self.tau = np.append(self.tau, self.tau[-1] + self.dtau) self.tau = np.append(self.tau, self.tau[-1] + self.dtau)
...@@ -148,7 +148,7 @@ class WakePotential(Element): ...@@ -148,7 +148,7 @@ class WakePotential(Element):
Dipole moment of the bunch. Dipole moment of the bunch.
""" """
dipole = np.zeros((self.n_bin - 1, )) dipole = np.empty((self.n_bin - 1, ))
for i in range(self.n_bin - 1): for i in range(self.n_bin - 1):
dipole[i] = bunch[plane][self.sorted_index == i].sum() dipole[i] = bunch[plane][self.sorted_index == i].sum()
dipole = dipole / self.profile dipole = dipole / self.profile
...@@ -219,14 +219,14 @@ class WakePotential(Element): ...@@ -219,14 +219,14 @@ class WakePotential(Element):
tau0 = np.arange(tau0[0] - dtau0*n_assym, tau0[-1] + dtau0, tau0 = np.arange(tau0[0] - dtau0*n_assym, tau0[-1] + dtau0,
dtau0) dtau0)
n_to_add = len(tau0) - len(W0) n_to_add = len(tau0) - len(W0)
W0 = np.insert(W0, 0, np.zeros(n_to_add)) W0 = np.concatenate((np.zeros(n_to_add), W0))
# add at tail # add at tail
elif np.abs(tau0[0]) > np.abs(tau0[-1]): elif np.abs(tau0[0]) > np.abs(tau0[-1]):
tau0 = np.arange(tau0[0], tau0[-1] + dtau0 * (n_assym+1), tau0 = np.arange(tau0[0], tau0[-1] + dtau0 * (n_assym+1),
dtau0) dtau0)
n_to_add = len(tau0) - len(W0) n_to_add = len(tau0) - len(W0)
W0 = np.insert(W0, 0, np.zeros(n_to_add)) W0 = np.concatenate((np.zeros(n_to_add), W0))
# Check is the wf is shorter than rho then add zeros # Check is the wf is shorter than rho then add zeros
if (tau0[0] > tau[0]) or (tau0[-1] < tau[-1]): if (tau0[0] > tau[0]) or (tau0[-1] < tau[-1]):
...@@ -237,7 +237,9 @@ class WakePotential(Element): ...@@ -237,7 +237,9 @@ class WakePotential(Element):
dtau0) dtau0)
W0 = np.insert(W0, 0, np.zeros(n)) W0 = np.insert(W0, 0, np.zeros(n))
n_to_add = len(tau0) - len(W0) n_to_add = len(tau0) - len(W0)
W0 = np.insert(W0, len(W0), np.zeros(n_to_add)) W0 = np.pad(W0, (0, n_to_add),
mode="constant",
constant_values=(0, 0))
if save_data: if save_data:
setattr(self, "tau0_" + wake_type, tau0) setattr(self, "tau0_" + wake_type, tau0)
...@@ -300,8 +302,13 @@ class WakePotential(Element): ...@@ -300,8 +302,13 @@ class WakePotential(Element):
self.charge_density(bunch) self.charge_density(bunch)
for wake_type in self.types: for wake_type in self.types:
tau0, Wp = self.get_wakepotential(bunch, wake_type) tau0, Wp = self.get_wakepotential(bunch, wake_type)
Wp_interp = np.interp(bunch["tau"], tau0 + self.tau_mean, Wp, if self.interp_on_postion:
0, 0) Wp_interp = np.interp(bunch["tau"], tau0 + self.tau_mean, Wp,
0, 0)
else:
Wp_interp = np.interp(self.center, tau0 + self.tau_mean, Wp,
0, 0)
Wp_interp= Wp_interp[self.sorted_index]
if wake_type == "Wlong": if wake_type == "Wlong":
bunch["delta"] += Wp_interp * bunch.charge / self.ring.E0 bunch["delta"] += Wp_interp * bunch.charge / self.ring.E0
elif wake_type == "Wxdip": elif wake_type == "Wxdip":
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment