diff --git a/mbtrack2/tracking/element.py b/mbtrack2/tracking/element.py index 7ccfa4d8caae64fab0190b9414693df4887b52cd..7fab92b56d9c37dabb6f3bdd2f110e32dfd490fe 100644 --- a/mbtrack2/tracking/element.py +++ b/mbtrack2/tracking/element.py @@ -201,27 +201,29 @@ class TransverseMap(Element): self.adts_poly[1](Jx) + self.adts_poly[3](Jy)) # 6x6 matrix corresponding to (x, xp, delta, y, yp, delta) - matrix = np.zeros((6, 6, len(bunch))) + matrix = np.zeros((6, 6, len(bunch)), dtype=np.float64) # Horizontal - matrix[0, 0, :] = np.cos( - phase_advance_x) + self.alpha[0] * np.sin(phase_advance_x) - matrix[0, 1, :] = self.beta[0] * np.sin(phase_advance_x) + c_x = np.cos(phase_advance_x) + s_x = np.sin(phase_advance_x) + + matrix[0, 0, :] = c_x + self.alpha[0] * s_x + matrix[0, 1, :] = self.beta[0] * s_x matrix[0, 2, :] = self.dispersion[0] - matrix[1, 0, :] = -1 * self.gamma[0] * np.sin(phase_advance_x) - matrix[1, 1, :] = np.cos( - phase_advance_x) - self.alpha[0] * np.sin(phase_advance_x) + matrix[1, 0, :] = -1 * self.gamma[0] * s_x + matrix[1, 1, :] = c_x - self.alpha[0] * s_x matrix[1, 2, :] = self.dispersion[1] matrix[2, 2, :] = 1 # Vertical - matrix[3, 3, :] = np.cos( - phase_advance_y) + self.alpha[1] * np.sin(phase_advance_y) - matrix[3, 4, :] = self.beta[1] * np.sin(phase_advance_y) + c_y = np.cos(phase_advance_y) + s_y = np.sin(phase_advance_y) + + matrix[3, 3, :] = c_y + self.alpha[1] * s_y + matrix[3, 4, :] = self.beta[1] * s_y matrix[3, 5, :] = self.dispersion[2] - matrix[4, 3, :] = -1 * self.gamma[1] * np.sin(phase_advance_y) - matrix[4, 4, :] = np.cos( - phase_advance_y) - self.alpha[1] * np.sin(phase_advance_y) + matrix[4, 3, :] = -1 * self.gamma[1] * s_y + matrix[4, 4, :] = c_y - self.alpha[1] * s_y matrix[4, 5, :] = self.dispersion[3] matrix[5, 5, :] = 1 diff --git a/mbtrack2/tracking/particles.py b/mbtrack2/tracking/particles.py index 1c3f20b12b53e40837e7c99922db83fa0cc6f096..f334be881a7fd0a559eadb6826fb30e9b8835b4b 100644 --- a/mbtrack2/tracking/particles.py +++ b/mbtrack2/tracking/particles.py @@ -128,11 +128,14 @@ class Bunch: current = 0 self._mp_number = int(mp_number) - self.dtype = np.dtype([('x', float), ('xp', float), ('y', float), - ('yp', float), ('tau', float), - ('delta', float)]) - - self.particles = np.zeros(self.mp_number, self.dtype) + self.particles = { + "x": np.zeros(self.mp_number, dtype=np.float64), + "xp": np.zeros(self.mp_number, dtype=np.float64), + "y": np.zeros(self.mp_number, dtype=np.float64), + "yp": np.zeros(self.mp_number, dtype=np.float64), + "tau": np.zeros(self.mp_number, dtype=np.float64), + "delta": np.zeros(self.mp_number, dtype=np.float64), + } self.track_alive = track_alive self.alive = np.ones((self.mp_number, ), dtype=bool) self.current = current @@ -144,7 +147,7 @@ class Bunch: def __len__(self): """Return the number of alive particles""" - return len(self[:]) + return self.alive.sum() def __getitem__(self, label): """Return the columns label for alive particles""" @@ -162,11 +165,13 @@ class Bunch: def __iter__(self): """Iterate over labels""" - return self.dtype.names.__iter__() + return self.particles.keys().__iter__() def __repr__(self): """Return representation of alive particles""" - return f'Bunch with macro-particles: \n {pd.DataFrame(self[:])!r}' + rep = pd.DataFrame(np.array([self[l] for l in self.__iter__()]).T, + columns=list(self.__iter__())) + return f'Bunch with macro-particles: \n {rep!r}' @property def mp_number(self): diff --git a/mbtrack2/tracking/wakepotential.py b/mbtrack2/tracking/wakepotential.py index 5881a2d706b5c041910b3913706e7004d582c847..46abfbd835b7bbd8e9fee32516c0e22010aea4f1 100644 --- a/mbtrack2/tracking/wakepotential.py +++ b/mbtrack2/tracking/wakepotential.py @@ -33,6 +33,11 @@ class WakePotential(Element): functions must be uniformly sampled! n_bin : int, optional Number of bins for constructing the longitudinal bunch profile. + interp_on_postion : bool, optional + If True, the computed wake potential is interpolated on the exact + particle location. If False, the wake potential is interpolated on the + bin center and each particle of the bin get the same value. + Default is True. Attributes ---------- @@ -71,13 +76,14 @@ class WakePotential(Element): Reduce wake function samping by an integer factor. """ - def __init__(self, ring, wakefield, n_bin=80): + def __init__(self, ring, wakefield, n_bin=80, interp_on_postion=True): self.wakefield = wakefield self.types = self.wakefield.wake_components self.n_types = len(self.wakefield.wake_components) self.ring = ring self.n_bin = n_bin self.check_sampling() + self.interp_on_postion = interp_on_postion # Suppress numpy warning for floating-point operations. np.seterr(invalid='ignore') @@ -110,18 +116,12 @@ class WakePotential(Element): self.dtau = self.tau[1] - self.tau[0] # Add N values before and after rho and tau - if self.n_bin % 2 == 0: - N = int(self.n_bin / 2) - self.tau = np.arange(self.tau[0] - self.dtau * N, - self.tau[-1] + self.dtau * N, self.dtau) - self.rho = np.append(self.rho, np.zeros(N)) - self.rho = np.insert(self.rho, 0, np.zeros(N)) - else: - N = int(np.floor(self.n_bin / 2)) - self.tau = np.arange(self.tau[0] - self.dtau * N, - self.tau[-1] + self.dtau * (N+1), self.dtau) - self.rho = np.append(self.rho, np.zeros(N)) - self.rho = np.insert(self.rho, 0, np.zeros(N + 1)) + N = int(self.n_bin / 2) + self.tau = np.arange(self.tau[0] - self.dtau * N, + self.tau[-1] + self.dtau * N, self.dtau) + self.rho = np.pad(self.rho, (N, N + self.n_bin % 2), + mode="constant", + constant_values=(0, 0)) if len(self.tau) != len(self.rho): self.tau = np.append(self.tau, self.tau[-1] + self.dtau) @@ -148,7 +148,7 @@ class WakePotential(Element): Dipole moment of the bunch. """ - dipole = np.zeros((self.n_bin - 1, )) + dipole = np.empty((self.n_bin - 1, )) for i in range(self.n_bin - 1): dipole[i] = bunch[plane][self.sorted_index == i].sum() dipole = dipole / self.profile @@ -219,14 +219,14 @@ class WakePotential(Element): tau0 = np.arange(tau0[0] - dtau0*n_assym, tau0[-1] + dtau0, dtau0) n_to_add = len(tau0) - len(W0) - W0 = np.insert(W0, 0, np.zeros(n_to_add)) + W0 = np.concatenate((np.zeros(n_to_add), W0)) # add at tail elif np.abs(tau0[0]) > np.abs(tau0[-1]): tau0 = np.arange(tau0[0], tau0[-1] + dtau0 * (n_assym+1), dtau0) n_to_add = len(tau0) - len(W0) - W0 = np.insert(W0, 0, np.zeros(n_to_add)) + W0 = np.concatenate((np.zeros(n_to_add), W0)) # Check is the wf is shorter than rho then add zeros if (tau0[0] > tau[0]) or (tau0[-1] < tau[-1]): @@ -237,7 +237,9 @@ class WakePotential(Element): dtau0) W0 = np.insert(W0, 0, np.zeros(n)) n_to_add = len(tau0) - len(W0) - W0 = np.insert(W0, len(W0), np.zeros(n_to_add)) + W0 = np.pad(W0, (0, n_to_add), + mode="constant", + constant_values=(0, 0)) if save_data: setattr(self, "tau0_" + wake_type, tau0) @@ -300,8 +302,13 @@ class WakePotential(Element): self.charge_density(bunch) for wake_type in self.types: tau0, Wp = self.get_wakepotential(bunch, wake_type) - Wp_interp = np.interp(bunch["tau"], tau0 + self.tau_mean, Wp, - 0, 0) + if self.interp_on_postion: + Wp_interp = np.interp(bunch["tau"], tau0 + self.tau_mean, Wp, + 0, 0) + else: + Wp_interp = np.interp(self.center, tau0 + self.tau_mean, Wp, + 0, 0) + Wp_interp= Wp_interp[self.sorted_index] if wake_type == "Wlong": bunch["delta"] += Wp_interp * bunch.charge / self.ring.E0 elif wake_type == "Wxdip":