Skip to content
Snippets Groups Projects
Commit 0147a9aa authored by Gamelin Alexis's avatar Gamelin Alexis
Browse files

Merge branch 'plot_beamdata'

parents 77b09b37 bd298996
No related branches found
No related tags found
No related merge requests found
......@@ -14,7 +14,7 @@ import seaborn as sns
import h5py as hp
import random
def plot_beamdata(filename, dataset, option=None, stat_var=None, x_var="time"):
def plot_beamdata(filename, dataset, dimension=None, stat_var=None, x_var="time"):
"""
Plot data recorded by BeamMonitor.
......@@ -24,14 +24,14 @@ def plot_beamdata(filename, dataset, option=None, stat_var=None, x_var="time"):
Name of the HDF5 file that contains the data.
dataset : {"current","emit","mean","std"}
HDF5 file's dataset to be plotted.
option : str, optional
If dataset is "emit", "mean", or "std", the variable name to be plotted
needs to be specified :
for "emit", option = {"x","y","s"}
for "mean" and "std", option = {"x","xp","y","yp","tau","delta"}
dimension : str, optional
The dimension of the dataset to plot. Use "None" for "current",
otherwise use the following :
for "emit", dimension = {"x","y","s"},
for "mean" and "std", dimension = {"x","xp","y","yp","tau","delta"}.
stat_var : {"mean", "std"}, optional
Statistical value of option. Except when dataset = "current", stat_var
needs to be specified. The default is None.
Statistical value of the dimension. Unless dataset = "current", stat_var
needs to be specified.
x_var : str, optional
Variable to be plotted on the horizontal axis. The default is "time".
......@@ -46,64 +46,43 @@ def plot_beamdata(filename, dataset, option=None, stat_var=None, x_var="time"):
path = file["Beam"]
if dataset == "current":
total_current = []
for i in range (len(path["time"])):
total_current.append(np.sum(path["current"][:,i])*1e3)
fig, ax = plt.subplots()
ax.plot(path["time"],total_current)
ax.plot(path["time"], np.nansum(path["current"][:],0)*1e3)
ax.set_xlabel("Number of turns")
ax.set_ylabel("total current (mA)")
elif dataset == "emit":
option_dict = {"x":0, "y":1, "s":2} #input option
axis = option_dict[option]
scale = [1e12, 1e12, 1e15]
label = ["$\\epsilon_{x}$ (pm.rad)",
"$\\epsilon_{y}$ (pm.rad)",
"$\\epsilon_{s}$ (fm.rad)"]
dimension_dict = {"x":0, "y":1, "s":2}
axis = dimension_dict[dimension]
label = ["$\\epsilon_{x}$ (m.rad)",
"$\\epsilon_{y}$ (m.rad)",
"$\\epsilon_{s}$ (m.rad)"]
if stat_var == "mean":
mean_emit = []
for i in range (len(path["time"])):
mean_emit.append(np.mean(path["emit"][axis,:,i])*scale[axis])
fig, ax = plt.subplots()
ax.plot(path["time"],mean_emit)
ax.plot(path["time"], np.nanmean(path["emit"][axis,:],0))
elif stat_var == "std":
std_emit = []
for i in range (len(path["time"])):
std_emit.append(np.std(path["emit"][axis,:,i])*scale[axis])
fig, ax = plt.subplots()
ax.plot(path["time"],std_emit)
ax.plot(path["time"], np.nanstd(path["emit"][axis,:],0))
ax.set_xlabel("Number of turns")
ax.set_ylabel(stat_var+" " + label[axis])
elif dataset == "mean" or dataset == "std":
option_dict = {"x":0, "xp":1, "y":2, "yp":3, "tau":4, "delta":5}
axis = option_dict[option]
dimension_dict = {"x":0, "xp":1, "y":2, "yp":3, "tau":4, "delta":5}
axis = dimension_dict[dimension]
scale = [1e6, 1e6, 1e6, 1e6, 1e12, 1]
label = ["x (um)", "x' ($\\mu$rad)", "y (um)", "y' ($\\mu$rad)",
"$\\tau$ (ps)", "$\\delta$"]
fig, ax = plt.subplots()
if stat_var == "mean":
mean_list = []
for i in range (len(path["time"])):
mean_list.append(np.mean(path[dataset][axis,:,i]*scale[axis]))
ax.plot(path["time"],mean_list)
if stat_var == "mean":
ax.plot(path["time"], np.nanmean(path[dataset][axis,:],0)*scale[axis])
label_sup = {"mean":"", "std":"std of "} # input stat_var
elif stat_var == "std":
std_list = []
for i in range (len(path["time"])):
std_list.append(np.std(path[dataset][axis,:,i]*scale[axis]))
ax.plot(path["time"],std_list)
elif stat_var == "std":
ax.plot(path["time"], np.nanstd(path[dataset][axis,:],0)*scale[axis])
label_sup = {"mean":"", "std":"std of "} #input stat_var
ax.set_xlabel("Number of turns")
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment