Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mbtrack2
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
PA
Collective Effects
mbtrack2
Commits
bd298996
Commit
bd298996
authored
4 years ago
by
Watanyu Foosang
Browse files
Options
Downloads
Patches
Plain Diff
Improve plot_beamdata
Remove for-loops inside the function.
parent
cbd90bb7
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
tracking/monitors/plotting.py
+22
-43
22 additions, 43 deletions
tracking/monitors/plotting.py
with
22 additions
and
43 deletions
tracking/monitors/plotting.py
+
22
−
43
View file @
bd298996
...
@@ -14,7 +14,7 @@ import seaborn as sns
...
@@ -14,7 +14,7 @@ import seaborn as sns
import
h5py
as
hp
import
h5py
as
hp
import
random
import
random
def
plot_beamdata
(
filename
,
dataset
,
opt
ion
=
None
,
stat_var
=
None
,
x_var
=
"
time
"
):
def
plot_beamdata
(
filename
,
dataset
,
dimens
ion
=
None
,
stat_var
=
None
,
x_var
=
"
time
"
):
"""
"""
Plot data recorded by BeamMonitor.
Plot data recorded by BeamMonitor.
...
@@ -24,14 +24,14 @@ def plot_beamdata(filename, dataset, option=None, stat_var=None, x_var="time"):
...
@@ -24,14 +24,14 @@ def plot_beamdata(filename, dataset, option=None, stat_var=None, x_var="time"):
Name of the HDF5 file that contains the data.
Name of the HDF5 file that contains the data.
dataset : {
"
current
"
,
"
emit
"
,
"
mean
"
,
"
std
"
}
dataset : {
"
current
"
,
"
emit
"
,
"
mean
"
,
"
std
"
}
HDF5 file
'
s dataset to be plotted.
HDF5 file
'
s dataset to be plotted.
opt
ion : str, optional
dimens
ion : str, optional
If dataset is
"
emit
"
,
"
mean
"
, or
"
std
"
, the variable name
to
be
plot
ted
The dimension of the dataset
to plot
. Use
"
None
"
for
"
current
"
,
needs to be specified
:
otherwise use the following
:
for
"
emit
"
,
opt
ion = {
"
x
"
,
"
y
"
,
"
s
"
}
for
"
emit
"
,
dimens
ion = {
"
x
"
,
"
y
"
,
"
s
"
}
,
for
"
mean
"
and
"
std
"
,
opt
ion = {
"
x
"
,
"
xp
"
,
"
y
"
,
"
yp
"
,
"
tau
"
,
"
delta
"
}
for
"
mean
"
and
"
std
"
,
dimens
ion = {
"
x
"
,
"
xp
"
,
"
y
"
,
"
yp
"
,
"
tau
"
,
"
delta
"
}
.
stat_var : {
"
mean
"
,
"
std
"
}, optional
stat_var : {
"
mean
"
,
"
std
"
}, optional
Statistical value of
option. Except when
dataset =
"
current
"
, stat_var
Statistical value of
the dimension. Unless
dataset =
"
current
"
, stat_var
needs to be specified.
The default is None.
needs to be specified.
x_var : str, optional
x_var : str, optional
Variable to be plotted on the horizontal axis. The default is
"
time
"
.
Variable to be plotted on the horizontal axis. The default is
"
time
"
.
...
@@ -46,64 +46,43 @@ def plot_beamdata(filename, dataset, option=None, stat_var=None, x_var="time"):
...
@@ -46,64 +46,43 @@ def plot_beamdata(filename, dataset, option=None, stat_var=None, x_var="time"):
path
=
file
[
"
Beam
"
]
path
=
file
[
"
Beam
"
]
if
dataset
==
"
current
"
:
if
dataset
==
"
current
"
:
total_current
=
[]
for
i
in
range
(
len
(
path
[
"
time
"
])):
total_current
.
append
(
np
.
sum
(
path
[
"
current
"
][:,
i
])
*
1e3
)
fig
,
ax
=
plt
.
subplots
()
fig
,
ax
=
plt
.
subplots
()
ax
.
plot
(
path
[
"
time
"
],
total_current
)
ax
.
plot
(
path
[
"
time
"
],
np
.
nansum
(
path
[
"
current
"
][:],
0
)
*
1e3
)
ax
.
set_xlabel
(
"
Number of turns
"
)
ax
.
set_xlabel
(
"
Number of turns
"
)
ax
.
set_ylabel
(
"
total current (mA)
"
)
ax
.
set_ylabel
(
"
total current (mA)
"
)
elif
dataset
==
"
emit
"
:
elif
dataset
==
"
emit
"
:
option_dict
=
{
"
x
"
:
0
,
"
y
"
:
1
,
"
s
"
:
2
}
#input option
dimension_dict
=
{
"
x
"
:
0
,
"
y
"
:
1
,
"
s
"
:
2
}
axis
=
option_dict
[
option
]
axis
=
dimension_dict
[
dimension
]
scale
=
[
1e12
,
1e12
,
1e15
]
label
=
[
"
$
\\
epsilon_{x}$ (m.rad)
"
,
label
=
[
"
$
\\
epsilon_{x}$ (pm.rad)
"
,
"
$
\\
epsilon_{y}$ (m.rad)
"
,
"
$
\\
epsilon_{y}$ (pm.rad)
"
,
"
$
\\
epsilon_{s}$ (m.rad)
"
]
"
$
\\
epsilon_{s}$ (fm.rad)
"
]
if
stat_var
==
"
mean
"
:
if
stat_var
==
"
mean
"
:
mean_emit
=
[]
for
i
in
range
(
len
(
path
[
"
time
"
])):
mean_emit
.
append
(
np
.
mean
(
path
[
"
emit
"
][
axis
,:,
i
])
*
scale
[
axis
])
fig
,
ax
=
plt
.
subplots
()
fig
,
ax
=
plt
.
subplots
()
ax
.
plot
(
path
[
"
time
"
],
mean_emit
)
ax
.
plot
(
path
[
"
time
"
],
np
.
nanmean
(
path
[
"
emit
"
][
axis
,:],
0
)
)
elif
stat_var
==
"
std
"
:
elif
stat_var
==
"
std
"
:
std_emit
=
[]
for
i
in
range
(
len
(
path
[
"
time
"
])):
std_emit
.
append
(
np
.
std
(
path
[
"
emit
"
][
axis
,:,
i
])
*
scale
[
axis
])
fig
,
ax
=
plt
.
subplots
()
fig
,
ax
=
plt
.
subplots
()
ax
.
plot
(
path
[
"
time
"
],
std_emit
)
ax
.
plot
(
path
[
"
time
"
],
np
.
nanstd
(
path
[
"
emit
"
][
axis
,:],
0
)
)
ax
.
set_xlabel
(
"
Number of turns
"
)
ax
.
set_xlabel
(
"
Number of turns
"
)
ax
.
set_ylabel
(
stat_var
+
"
"
+
label
[
axis
])
ax
.
set_ylabel
(
stat_var
+
"
"
+
label
[
axis
])
elif
dataset
==
"
mean
"
or
dataset
==
"
std
"
:
elif
dataset
==
"
mean
"
or
dataset
==
"
std
"
:
opt
ion_dict
=
{
"
x
"
:
0
,
"
xp
"
:
1
,
"
y
"
:
2
,
"
yp
"
:
3
,
"
tau
"
:
4
,
"
delta
"
:
5
}
dimens
ion_dict
=
{
"
x
"
:
0
,
"
xp
"
:
1
,
"
y
"
:
2
,
"
yp
"
:
3
,
"
tau
"
:
4
,
"
delta
"
:
5
}
axis
=
opt
ion_dict
[
opt
ion
]
axis
=
dimens
ion_dict
[
dimens
ion
]
scale
=
[
1e6
,
1e6
,
1e6
,
1e6
,
1e12
,
1
]
scale
=
[
1e6
,
1e6
,
1e6
,
1e6
,
1e12
,
1
]
label
=
[
"
x (um)
"
,
"
x
'
($
\\
mu$rad)
"
,
"
y (um)
"
,
"
y
'
($
\\
mu$rad)
"
,
label
=
[
"
x (um)
"
,
"
x
'
($
\\
mu$rad)
"
,
"
y (um)
"
,
"
y
'
($
\\
mu$rad)
"
,
"
$
\\
tau$ (ps)
"
,
"
$
\\
delta$
"
]
"
$
\\
tau$ (ps)
"
,
"
$
\\
delta$
"
]
fig
,
ax
=
plt
.
subplots
()
fig
,
ax
=
plt
.
subplots
()
if
stat_var
==
"
mean
"
:
if
stat_var
==
"
mean
"
:
mean_list
=
[]
ax
.
plot
(
path
[
"
time
"
],
np
.
nanmean
(
path
[
dataset
][
axis
,:],
0
)
*
scale
[
axis
])
for
i
in
range
(
len
(
path
[
"
time
"
])):
mean_list
.
append
(
np
.
mean
(
path
[
dataset
][
axis
,:,
i
]
*
scale
[
axis
]))
ax
.
plot
(
path
[
"
time
"
],
mean_list
)
label_sup
=
{
"
mean
"
:
""
,
"
std
"
:
"
std of
"
}
# input stat_var
label_sup
=
{
"
mean
"
:
""
,
"
std
"
:
"
std of
"
}
# input stat_var
elif
stat_var
==
"
std
"
:
elif
stat_var
==
"
std
"
:
std_list
=
[]
ax
.
plot
(
path
[
"
time
"
],
np
.
nanstd
(
path
[
dataset
][
axis
,:],
0
)
*
scale
[
axis
])
for
i
in
range
(
len
(
path
[
"
time
"
])):
std_list
.
append
(
np
.
std
(
path
[
dataset
][
axis
,:,
i
]
*
scale
[
axis
]))
ax
.
plot
(
path
[
"
time
"
],
std_list
)
label_sup
=
{
"
mean
"
:
""
,
"
std
"
:
"
std of
"
}
#input stat_var
label_sup
=
{
"
mean
"
:
""
,
"
std
"
:
"
std of
"
}
#input stat_var
ax
.
set_xlabel
(
"
Number of turns
"
)
ax
.
set_xlabel
(
"
Number of turns
"
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment