Skip to content
Snippets Groups Projects
ArchiveExtractor.py 26.1 KiB
Newer Older
BRONES Romain's avatar
BRONES Romain committed
"""
Python module for extracting attribute from Archive Extractor Device.
BRONES Romain's avatar
BRONES Romain committed
"""
import logging
import datetime
import numpy as np
import PyTango as tango
import pandas as pd
BRONES Romain's avatar
BRONES Romain committed

BRONES Romain's avatar
BRONES Romain committed

System User's avatar
System User committed
##########################################################################
###                 Install logger for the module                      ###
##########################################################################
logger = logging.getLogger(__name__)
#logger.setLevel(getattr(logging, logger.upper()))

if not logger.hasHandlers():
    # No handlers, create one
    sh = logging.StreamHandler()
    sh.setLevel(logger.level)
    sh.setFormatter(logging.Formatter("%(levelname)s:%(message)s"))
    logger.addHandler(sh)


##########################################################################
###               Commodity private variables                          ###
##########################################################################
BRONES Romain's avatar
BRONES Romain committed

System User's avatar
System User committed
# Extractor date format for GetAttDataBetweenDates
_DBDFMT = "%Y-%m-%d %H:%M:%S"
System User's avatar
System User committed
# Extractor date format for GetNearestValue
_DBDFMT2 = "%d-%m-%Y %H:%M:%S"

##########################################################################
###               Commodity private functions                          ###
##########################################################################
System User's avatar
System User committed
# Vectorized fromtimestamp function
# NOTE: it is faster than using pandas.to_datetime()
_ArrayTimeStampToDatetime = np.vectorize(datetime.datetime.fromtimestamp)
BRONES Romain's avatar
BRONES Romain committed

def _check_initialized():
    """
    Check if the module is initialized.

    Returns
    -------
    success : boolean
    """
    global _extractors
    if None in _extractors:
        logger.error("Module {0} is not initialied. You should run {0}.init().".format(__name__))
        return False
    return True
##----------------------------------------------------------------------##
def _dateparse(datestr):
    """
    Convenient function to parse date or duration strings.
    Exact date format is %Y-%m-%d-%H:%M:%S and it can be reduced to be less precise.
    Duration format is 'Xu' where X is a number and u is a unit in ('m':minutes, 'h':hours, 'd':days, 'M':months)
BRONES Romain's avatar
BRONES Romain committed
    If datstr is None, take the actual date and time.

    Parameters
    ---------
    datestr : string
        Date as a string, format %Y-%m-%d-%H:%M:%S or less precise.
        Duration as a string, format 'Xu' where X is a number and u is a unit in ('m':minutes, 'h':hours, 'd':days, 'M':months)

    Exceptions
    ----------
    ValueError
        If the parsing failed.

    Returns
    -------
    date : datetime.datetime or datetime.timedelta
        Parsed date or duration
    logger.debug("Parsing date string '%s'"%datestr)

    # Determine date/duration by looking at the last char
    if datestr[-1] in "mhdM":
        # Duration
        logger.debug("Assuming a duration")
            q=float(datestr[:-1])
        except ValueError as e:
            logger.error("Failed to parse date string. Given the last character, a duration was assumed.")
            raise Exception("Could not parse argument to a date") from e

        # Convert all in minutes
        minutes = q*{'m':1, 'h':60, 'd':60*24, 'm':30*60*24}[datestr[-1]]

        return datetime.timedelta(minutes=minutes)

        # Probably a date string

        # This gives all format that will be tried, in order.
        # Stop on first parse success. Raise error if none succeed.
        fmt = [
            "%Y-%m-%d-%H:%M:%S",
            "%Y-%m-%d-%H:%M",
            "%Y-%m-%d-%H",
            "%Y-%m-%d",
            "%Y-%m",
            ]

        date = None
        for f in fmt:
            try:
                date = datetime.datetime.strptime(datestr, f)
            except ValueError:
                continue
            else:
                break
        else:
            raise ValueError("Could not parse argument to a date")
##----------------------------------------------------------------------##
def _check_attribute(attribute, db):
    """
    Check that the attribute is in the database

    Parameters
    ----------
    attribute : String
        Name of the attribute. Full Tango name i.e. "test/dg/panda/current".

    db: str
        Which database to look in, 'H' or 'T'.
    """
    global _extractors

    logger.debug("Check that %s is archived."%attribute)
    if not _extractors[{'H':0, 'T':1}[db]].IsArchived(attribute):
        logger.error("Attribute '%s' is not archived in DB %s"%(attribute, _extractors[{'H':0, 'T':1}[db]]))
        raise ValueError("Attribute '%s' is not archived in DB %s"%(attribute, _extractors[{'H':0, 'T':1}[db]]))

##----------------------------------------------------------------------##
def _chunkerize(attribute, dateStart, dateStop, db, Nmax=100000):
    """

    Parameters
    ----------
    attribute : String
        Name of the attribute. Full Tango name i.e. "test/dg/panda/current".

    dateStart : datetime.datetime
        Start date for extraction.

    dateStop : datetime.datetime
        Stop date for extraction.

    db: str
        Which database to look in, 'H' or 'T'.

    Nmax: int
        Max number of atoms in one chunk. Default 100000.

    Returns
    -------
    cdates : list
        List of datetime giving the limit of each chunks.
        For N chunks, there is N+1 elements in cdates, as the start and end boundaries are included.
    """
    info=infoattr(attribute, db=db)
    logger.debug("Attribute information \n%s"%info)

    # Get the number of points
    N=_extractors[{'H':0, 'T':1}[db]].GetAttDataBetweenDatesCount([
            attribute,
            dateStart.strftime(_DBDFMT2),
            dateStop.strftime(_DBDFMT2)
            ])
    logger.debug("On the period, there is %d entries"%N)

    dx=int(info["max_dim_x"])
    if dx > 1:
        logger.debug("Attribute is a vector with max dimension = %s"%dx)
        N=N*dx

    # If data chunk is too much, we need to cut it
    if N > Nmax:
        dt = (dateStop-dateStart)/(N//Nmax)
        cdates = [dateStart]
        while cdates[-1] < dateStop:
            cdates.append(cdates[-1]+dt)
        cdates[-1] = dateStop
        logger.debug("Cutting access to %d little chunks of time, %s each."%(len(cdates)-1, dt))
    else:
        cdates=[dateStart, dateStop]

    return cdates

##----------------------------------------------------------------------##
def _cmd_with_retry(dp, cmd, arg, retry=2):
    """
    Run a command on tango.DeviceProxy, retrying on DevFailed.

    Parameters
    ----------
    dp: tango.DeviceProxy
        Device proxy to try command onto.

    cmd : str
        Command to executte on the extractor

    arg : list
        Attribute to pass to the command

    retry : int
        Number of command retry on DevFailed

    Returns
    -------
    cmdreturn :
        Whatever the command returns.
        None if failed after the amount of retries.
    """
    logger.info("Perform Command {} {}".format(cmd, arg))

    for i in range(retry):
        # Make retrieval request
        logger.debug("Execute %s (%s)"%(cmd, arg))
        try:
            cmdreturn = getattr(dp, cmd)(arg)
        except tango.DevFailed as e:
            logger.warning("The extractor device returned the following error:")
            logger.warning(e)
            if  i == retry-1:
                logger.error("Could not execute command %s (%s). Check the device extractor"%(cmd, arg))
                return None
            logger.warning("Retrying...")
            continue
        break
    return cmdreturn

##########################################################################
###                  Module private variables                          ###
##########################################################################
# Tuple of extractor for HDB and TDB
_extractors = (None, None)

# Tuple for attribute tables
_AttrTables = (None, None)

##########################################################################
###                Module initialisation functions                     ###
##########################################################################
def init(
        HdbExtractorPath="archiving/hdbextractor/2",
        TdbExtractorPath="archiving/tdbextractor/2",
BRONES Romain's avatar
BRONES Romain committed
        loglevel="info",
            ):
    """
    Initialize the module.
    Instanciate tango.DeviceProxy for extractors (TDB and HDB)

    Parameters:
    -----------
    HdbExtractorPath, TdbExtractorPath: string
        Tango path to the extractors.
    loglevel: string
        loglevel to pass to logging.Logger
    """
    global _extractors
    global _AttrTables
BRONES Romain's avatar
BRONES Romain committed
    try:
        logger.setLevel(getattr(logging, loglevel.upper()))
    except AttributeError:
        logger.error("Wrong log level specified: {}".format(loglevel.upper()))

    logger.debug("Instanciating extractors device proxy...")

    _extractors = (tango.DeviceProxy(HdbExtractorPath), tango.DeviceProxy(TdbExtractorPath))
    logger.debug("{} and {} instanciated.".format(*_extractors))

    logger.debug("Configuring extractors device proxy...")
    for e in _extractors:
        # set timeout to 3 sec
        e.set_timeout_millis(3000)

    logger.debug("Filling attributes lookup tables...")
    _AttrTables = tuple(e.getattnameall() for e in _extractors)
    logger.debug("HDB: {} TDB: {} attributes counted".format(len(_AttrTables[0]), len(_AttrTables[1])))

##########################################################################
###                    Module access functions                         ###
##########################################################################

def extract(
        attr,
        date1, date2=None,
        method="nearest",
        db='H',
        ):
    """
    Access function to perform extraction between date1 and date2.
    Can extract one or several attributes.
    date1 and date2 can be both exact date, or one of two can be a time interval that will be taken relative to the other.


    Parameters:
    -----------
    attr: string, list, dict
        Attribute(s) to extract.
        If string, extract the given attribute, returning a pandas.Series.
        If list, extract attributes and return a list of pandas.Series.
        If a dict, extract attributes and return a dict of pandas.Series with same keys.

    date1, date2: string, datetime.datetime, datetime.timedelta, None
        Exact date, or duration relative to date2.
        If string, it will be parsed.
        A start date can be given with string format '%Y-%m-%d-%H:%M:%S' or less precise (ie '2021-02', '2022-11-03' '2022-05-10-21:00'.i..).
        A duration can be given with string format 'Xu' where X is a number and u is a unit in ('m':minutes, 'h':hours, 'd':days, 'M':months)
        A datetime.datetime object or datetime.timedelta object will be used as is.
        date2 can be None. In that case it is replaced by the current time.

    method: str
        Method of extraction
            'nearest': Retrieve nearest value of date1, date2 is ignored.
            'between': Retrive data between date1 and date2.

    db: str
        Which database to look in, 'H' or 'T'.

    """

    ## _-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
    #    Perform a few sanity checks
    if not _check_initialized():
        # Stop here, the function has produced a message if necessary
        return

    if not db in ("H", "T"):
        raise ValueError("Attribute 'db' should be 'H' or 'T'")


    allowedmethods=("nearest", "between", "minmaxmean")
    if not method in allowedmethods:
        raise ValueError("Attribute 'method' should be in {}".format(str(allowedmethods)))

    ## _-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
    #     Work with dates
    if not type(date1) in (datetime.datetime, datetime.timedelta):
        date1 = _dateparse(date1)
    if date2 is None:
        date2 = datetime.datetime.now()
    else:
        if not type(date2) in (datetime.datetime, datetime.timedelta):
            date2 = _dateparse(date2)

    if not datetime.datetime in (type(date1), type(date2)):
        logger.error("One of date1 date2 should be an exact date.\nGot {} {}".format(date1, date2))
        raise ValueError("date1 and date2 not valid")

    # Use timedelta relative to the other date. date1 is always before date2
    if type(date1) is datetime.timedelta:
        date1 = date2-date1
    if type(date2) is datetime.timedelta:
        date2 = date1+date2

    if  date1 > date2:
        logger.error("date1 must precede date2.\nGot {} {}".format(date1, date2))
        raise ValueError("date1 and date2 not valid")

    ## _-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_
    #      Perform extraction and return

    if type(attr) is dict:
        d=dict()
        for k,v in attr.items():
            try:
                d.update({k:_extract_attribute(v, method, date1, date2, db)})
            except Exception as e:
                logger.debug("Exception in _extract_attribute(): "+str(e))
                logger.debug(traceback.print_tb(e.__traceback__))
                logger.error("Could not extract {}.".format(v))

        return d

    if type(attr) in (list,tuple):
        d=[]
        for v in attr:
            try:
                d.append(_extract_attribute(v, method, date1, date2, db))
            except Exception as e:
                logger.debug("Exception in _extract_attribute(): "+str(e))
                logger.debug(traceback.print_tb(e.__traceback__))
                logger.error("Could not extract {}.".format(v))

        return d

    try:
        d=_extract_attribute(attr, method, date1, date2, db)
    except Exception as e:
        logger.debug("Exception in _extract_attribute(): "+str(e))
        logger.debug(traceback.print_tb(e.__traceback__))
        logger.error("Could not extract {}.".format(attr))
        return None

    return d

##----------------------------------------------------------------------##
def findattr(pattern, db="H"):
    """
    Search for an attribute path using the pattern given.
    Case insensitive.

    Parameters:
    -----------
    pattern: str
        Pattern to search, wildchar * accepted.
        example "dg*dcct*current"

    db: str
        Which database to look in, 'H' or 'T'.

    Returns:
    --------
    results: (str,)
        List of string match
    """
    if not _check_initialized():
        return

    if not db in ("H", "T"):
        raise AttributeError("Attribute db should be 'H' or 'T'")

    global _AttrTables

    keywords=pattern.lower().split('*')

    # Select DB
    attr_table = _AttrTables[{'H':0, 'T':1}[db]]

    matches = [attr for attr in attr_table if all(k in attr.lower() for k in keywords)]

    return matches

##----------------------------------------------------------------------##
def infoattr(attribute, db='H'):
    """
    Get informations for an attribute and pack it into a python dict.

    Parameters
    ----------
    attribute : String
        Name of the attribute. Full Tango name i.e. "test/dg/panda/current".

    db: str
        Which database to look in, 'H' or 'T'.

    Returns
    -------
    info : dict
        Dictionnary of propertyname:propertyvalue
    """
    if not _check_initialized():
        return

    if not db in ("H", "T"):
        raise AttributeError("Attribute db should be 'H' or 'T'")

    info = dict()

    for func in ("GetAttDefinitionData", "GetAttPropertiesData"):
        R=getattr(_extractors[{'H':0, 'T':1}[db]], func)(attribute)
        if not R is None:
            for i in R:
                _s=i.split("::")
                info[_s[0]]=_s[1]
        else:
            logger.warning("Function %s on extractor returned None"%func)

    return info

##########################################################################
###                    Module core functions                           ###
##########################################################################
def _extract_attribute(attribute, method, date1, date2, db):
    """
    Check if exists, check scalar or spectrum and dispatch
    # Uncapitalize attribute
    attribute = attribute.lower()
    _check_attribute(attribute, db)
    # Get info about the attribute
    info=infoattr(attribute, db=db)
    logger.debug("Attribute information \n%s"%info)

    # Detect spectrum
    attrtype="scalar"
    if int(info["max_dim_x"]) > 1:
        if int(info["max_dim_y"]) > 0:
            logger.warning("Attribute %s is a (%s; %s) vector. This is poorly handled by this module."%(
                attribute, info["max_dim_x"], info["max_dim_y"]))
            attrtype="multi"
        else:
            logger.info("Attribute %s is a 1D vector, dimension = %s."%(
                attribute, info["max_dim_x"]))
            attrtype="vector"

    # =============
    # For now we handle multi dimension the same way as scalar, which will get only the first element
    if (attrtype=="scalar") or (attrtype=="multi"):
        if info["data_type"] == '1':
            # Boolean data type, quick fix
            dtype=bool
        else:
            dtype=float

        return _extract_scalar(attribute, method, date1, date2, db, dtype)
    if attrtype=="vector":
        return _extract_vector(attribute, method, date1, date2, db)
##---------------------------------------------------------------------------##
def _extract_scalar(attribute, method, date1, date2, db, dtype):
    # =====================
    if method == "nearest":
        cmdreturn = _cmd_with_retry(_extractors[{'H':0, 'T':1}[db]], "GetNearestValue", [
                                                attribute,
                                                date1.strftime(_DBDFMT),
                                                ])
        # Unpack return
        try:
            _date, _value = cmdreturn.split(';')
        except TypeError:
            logger.error("Could not extract this chunk. Check the device extractor")
            return None

        # Fabricate return pandas.Series
        d=pd.Series(index=[datetime.datetime.fromtimestamp(int(_date)/1000),], data=[float(_value),], name=attribute)

        return d

    # =====================
    if method == "between":
        # Cut the time horizon in chunks
        cdates = _chunkerize(attribute, date1, date2, db)

        # Array to hold data
        data = []

        # For each date chunk
        for i_d in range(len(cdates)-1):
            cmdreturn = _cmd_with_retry(_extractors[{'H':0, 'T':1}[db]], "ExtractBetweenDates", [
                                                    attribute,
                                                    cdates[i_d].strftime(_DBDFMT),
                                                    cdates[i_d+1].strftime(_DBDFMT)
                                                    ])


            # Unpack return
            try:
                _date, _value = cmdreturn
            except TypeError:
                logger.error("Could not extract this chunk. Check the device extractor")
                return None


            # Transform to datetime - value arrays
            _value = np.asarray(_value, dtype=dtype)
            if len(_date) > 0:
                _date = _ArrayTimeStampToDatetime(_date/1000.0)

            # Fabricate return pandas.Series
            data.append(pd.Series(index=_date, data=_value, name=attribute))
        # Concatenate chunks
        return pd.concat(data)
    # ========================
    if method == "minmaxmean":
        # If we are here, the method is not implemented
        logger.error("Method {} is not implemented for scalars.".format(method))
        raise NotImplemented
##---------------------------------------------------------------------------##
def _extract_vector(attribute, method, date1, date2, db):
    # Get info about the attribute
    info=infoattr(attribute, db=db)
    # =====================
    if method == "nearest":
        # Get nearest does not work with vector.
        # Make a between date with surounding dates.

        # Dynamically find surounding
        cnt=0
        dt=datetime.timedelta(seconds=10)
        while cnt<1:
            logger.debug("Seeking points in {} to {}".format(date1-dt,date1+dt))
            cnt=_extractors[{'H':0, 'T':1}[db]].GetAttDataBetweenDatesCount([
                    attribute,
                    (date1-dt).strftime(_DBDFMT2),
                    (date1+dt).strftime(_DBDFMT2)
                    ])
            dt=dt*1.5
        logger.debug("Found {} points in a +- {} interval".format(cnt,str(dt/1.5)))


        # For vector, we have to use the GetAttxxx commands
        cmdreturn = _cmd_with_retry(_extractors[{'H':0, 'T':1}[db]], "GetAttDataBetweenDates", [
                                                attribute,
                                                (date1-dt).strftime(_DBDFMT),
                                                (date1+dt).strftime(_DBDFMT),
                                                ])

        # Unpack return
        try:
            [N,], [name,] = cmdreturn
            N=int(N)
        except TypeError:
            logger.error("Could not extract this attribute. Check the device extractor")
            return None

        # Read the history
        logger.debug("Retrieve history of %d values. Dynamic attribute named %s."%(N, name))
        attrHist = _extractors[{'H':0, 'T':1}[db]].attribute_history(name, N)

        # Transform to datetime - value arrays
        _value = np.empty((N, int(info["max_dim_x"])), dtype=float)
        _value[:] = np.nan
        _date = np.empty(N, dtype=object)
        for i_h in range(N):
            _value[i_h,:attrHist[i_h].dim_x]=attrHist[i_h].value
            _date[i_h]=attrHist[i_h].time.todatetime()

        # Seeking nearest entry
        idx=np.argmin(abs(_date-date1))
        logger.debug("Found nearest value at index {}: {}".format(idx, _date[idx]))

        # Fabricate return pandas.Series
        d=pd.Series(index=[_date[idx],], data=[_value[idx],], name=attribute)

        return d

    # If we are here, the method is not implemented
    logger.error("Method {} is not implemented for vectors.".format(method))
    raise NotImplemented
BRONES Romain's avatar
BRONES Romain committed
##---------------------------------------------------------------------------##
def ExtrBetweenDates_MinMaxMean(
        attribute,
        dateStart,
        dateStop=None,
BRONES Romain's avatar
BRONES Romain committed
        timeInterval=datetime.timedelta(seconds=60),
        db='H',
        ):
    """
    Query attribute data from an archiver database, get all points between dates.
    Use ExtractBetweenDates.
BRONES Romain's avatar
BRONES Romain committed

BRONES Romain's avatar
BRONES Romain committed
    Parameters
    ----------
    attribute : String
        Name of the attribute. Full Tango name i.e. "test/dg/panda/current".
BRONES Romain's avatar
BRONES Romain committed
    dateStart : datetime.datetime, string
        Start date for extraction. If string, it will be parsed.
        Example of string format %Y-%m-%d-%H:%M:%S or less precise.
BRONES Romain's avatar
BRONES Romain committed
    dateStop : datetime.datetime, string
        Stop date for extraction. If string, it will be parsed.
        Example of string format %Y-%m-%d-%H:%M:%S or less precise.
        Default is now (datetime.datetime.now())
BRONES Romain's avatar
BRONES Romain committed
    timeInterval: datetime.timedelta, string
        Time interval used to perform min,max and mean.
        Can be a string with a number and a unit in "d", "h", "m" or "s"
BRONES Romain's avatar
BRONES Romain committed
    db: str
        Which database to look in, 'H' or 'T'.
BRONES Romain's avatar
BRONES Romain committed
    Exceptions
    ----------
    ValueError
        The attribute is not found in the database.
BRONES Romain's avatar
BRONES Romain committed
    Returns
    -------
    [mdates, value_min, value_max, value_mean] : array
        mdates : numpy.ndarray of datetime.datime objects
            Dates of the values, middle of timeInterval windows
        value_min : numpy.ndarray
            Minimum of the value on the interval
        value_max : numpy.ndarray
            Maximum of the value on the interval
        value_mean : numpy.ndarray
            Mean of the value on the interval
BRONES Romain's avatar
BRONES Romain committed
    """
    if not _check_initialized():
        return
BRONES Romain's avatar
BRONES Romain committed
    if not db in ("H", "T"):
        raise AttributeError("Attribute db should be 'H' or 'T'")
BRONES Romain's avatar
BRONES Romain committed
    # Uncapitalize attribute
    attribute = attribute.lower()
BRONES Romain's avatar
BRONES Romain committed
    # Check attribute is in database
    _check_attribute(attribute, db=db)
BRONES Romain's avatar
BRONES Romain committed
    # Parse dates
    dateStart = _dateparse(dateStart)
    dateStop = _dateparse(dateStop)
BRONES Romain's avatar
BRONES Romain committed
    # Parse timeInterval if string
    if type(timeInterval) is str:
        try:
            mul = {'s':1, 'm':60, 'h':60*60, 'd':60*60*24}[timeInterval[-1]]
        except KeyError:
            logger.error("timeInterval could not be parsed")
            raise ValueError("timeInterval could not be parsed")
        timeInterval= datetime.timedelta(seconds=int(timeInterval[:-1])*mul)
BRONES Romain's avatar
BRONES Romain committed
    # Get info about the attribute
    info=infoattr(attribute)
    logger.debug("Attribute information \n%s"%info)
BRONES Romain's avatar
BRONES Romain committed
    # Detect spectrum
    attrtype="scalar"
    if int(info["max_dim_x"]) > 1:
        logger.error("Attribute is not a scalar. Cannot perform this kind of operation.")
BRONES Romain's avatar
BRONES Romain committed
        return None

    # Cut data range in time chunks
    cdates = [dateStart]
    while cdates[-1] < dateStop:
        cdates.append(cdates[-1]+timeInterval)
    cdates[-1] = dateStop
    mdates = np.asarray(cdates[:-1])+timeInterval/2
    logger.debug("Cutting time range to %d chunks of time, %s each."%(len(cdates)-1, timeInterval))
BRONES Romain's avatar
BRONES Romain committed

    # Prepare arrays
    value_min = np.empty(len(cdates)-1)
    value_max = np.empty(len(cdates)-1)
    value_mean = np.empty(len(cdates)-1)

    # For each time chunk
    for i_d in range(len(cdates)-1):
        for func, arr in zip(
                ["Max", "Min", "Avg"],
                [value_max, value_min, value_mean],
                ):
            # Make requests
            logger.debug("Perform GetAttData%sBetweenDates (%s, %s, %s)"%(
BRONES Romain's avatar
BRONES Romain committed
                func,
                attribute,
                cdates[i_d].strftime(_DBDFMT2),
                cdates[i_d+1].strftime(_DBDFMT2))
                )
            _val =getattr(_extractors[{'H':0, 'T':1}[db]], "GetAttData%sBetweenDates"%func)([
BRONES Romain's avatar
BRONES Romain committed
                attribute,
                cdates[i_d].strftime(_DBDFMT2),
                cdates[i_d+1].strftime(_DBDFMT2)
                ])
BRONES Romain's avatar
BRONES Romain committed
            arr[i_d] = _val
    logger.debug("Extraction done for %s."%attribute)
    return pd.DataFrame(
            index=mdates,
            data={
                "Min":value_min,
                "Mean":value_mean,
                "Max":value_max,
                },)
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
## Initialize on import
## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ## ##
init()