Skip to content
Snippets Groups Projects
ArchiveExtractor.py 13.2 KiB
Newer Older
BRONES Romain's avatar
BRONES Romain committed
#!/usr/Local/pyroot/PyTangoRoot/bin/python
"""
Python module for extracting attribute from Arhive Extractor Device.

Includes a Command Line Interface.
Can be imported as is to use function in user script.

"""
import logging
import datetime
import numpy as np
import PyTango as tango

BRONES Romain's avatar
BRONES Romain committed

class ArchiveExtractor:
BRONES Romain's avatar
BRONES Romain committed

    ##########################################################################
    """ Commodity variables """
    # Extractor date format for GetAttDataBetweenDates
    DBDFMT = "%Y-%m-%d %H:%M:%S"
    # Extractor date format for GetNearestValue
    DBDFMT2 = "%d-%m-%Y %H:%M:%S"
BRONES Romain's avatar
BRONES Romain committed

    # Vectorized fromtimestamp function
    ArrayTimeStampToDatetime = np.vectorize(datetime.datetime.fromtimestamp)
BRONES Romain's avatar
BRONES Romain committed

    # Max number of point per extraction chunks
    Nmax = 100000
BRONES Romain's avatar
BRONES Romain committed

    ##########################################################################
    def __init__(
            self,
            ExtractorKind='H', ExtractorNumber=2,
            ExtractorPath=None,
            logger=logging.getLogger("ArchiveExtractor")
            ):
        """
        Constructor function

        Parameters
        ----------
        ExtractorKind: char
            Either 'H' or 'T' for HDB or TDB.

        ExtractorNumber: int
            Number of the archive extractor instance to use.

        ExtractorPath: string
            Tango path to the extractor.
            If this argument is given, it takes precedence over ExtractorKind and ExtractorNumber.

        logger: logging.Logger
            Logger object to use

        Return
        ------
        ArchiveExtractor
        """

        # Get logger
        self.logger = logger

        #######################################################
        # Select Extractor
        if ExtractorPath is None:
            self.extractor = "archiving/%sDBExtractor/%d"%(ExtractKind, ExtractorNumber)
        else:
            self.extractor = tango.DeviceProxy(ExtractorPath)

        self.extractor.set_timeout_millis(3000)
        self.logger.debug("Archive Extractor %s used."%self.extractor.name())

    ##---------------------------------------------------------------------------##
    @staticmethod
    def dateparse(datestr):
        """
        Convenient function to parse date strings.
        Global format is %Y-%m-%d-%H:%M:%S and it can be reduced to be less precise.

        Parameters
        ---------
        datestr : string
            Date as a string, format %Y-%m-%d-%H:%M:%S or less precise.

        Exceptions
        ----------
        ValueError
            If the parsing failed.

        Returns
        -------
        date : datetime.datetime
            Parsed date
        """

        # This gives all format that will be tried, in order.
        # Stop on first parse success. Raise error if none succeed.
        fmt = [
            "%Y-%m-%d-%H:%M:%S",
            "%Y-%m-%d-%H:%M",
            "%Y-%m-%d-%H",
            "%Y-%m-%d",
            "%Y-%m",
            ]

        date = None
        for f in fmt:
            try:
                date = datetime.datetime.strptime(datestr, f)
            except ValueError:
                continue
            else:
                break
        else:
            raise ValueError("Could not parse argument to a date")
BRONES Romain's avatar
BRONES Romain committed

    ##---------------------------------------------------------------------------##
    def evalPoints(
            self,
            attribute,
            dateStart,
            dateStop,
            ):
        """
        Evaluate the number of points for the attribute on the date range.
        Also checks for its presence.
BRONES Romain's avatar
BRONES Romain committed

        Parameters
        ----------
        attribute : String
            Name of the attribute. Full Tango name i.e. "test/dg/panda/current".
BRONES Romain's avatar
BRONES Romain committed

        dateStart : datetime.datetime
            Start date for extraction.
BRONES Romain's avatar
BRONES Romain committed

        dateStop : datetime.datetime
            Stop date for extraction.
            Default is now (datetime.datetime.now())
BRONES Romain's avatar
BRONES Romain committed

        Exceptions
        ----------
        ValueError
            The attribute is not found in the database.
BRONES Romain's avatar
BRONES Romain committed

        NotImplemented
            The archive mode returned by the DB is not handled.
        Return
        ------
        N: int
            Number of points on the date range.
BRONES Romain's avatar
BRONES Romain committed

        """
        # Check that the attribute is in the database
        self.logger.debug("Check that %s is archived."%attribute)
        if not self.extractor.IsArchived(attribute):
            self.logger.error("Attribute '%s' is not archived in DB %s"%(attribute, extractor))
            raise ValueError("Attribute '%s' is not archived in DB %s"%(attribute, extractor))
BRONES Romain's avatar
BRONES Romain committed

        # Get its sampling period in seconds
        req=self.extractor.GetArchivingMode(attribute)
        self.logger.debug("GetArchivingMode: "+str(req))
BRONES Romain's avatar
BRONES Romain committed

        if req[0] == "MODE_P":
            samplingPeriod = int(req[1])*10**-3
            self.logger.debug("Attribute is sampled every %g seconds"%samplingPeriod)
BRONES Romain's avatar
BRONES Romain committed

        elif req[0] == "MODE_EVT":
            self.logger.warning("Attribute is archived on event. Chunks of data are sized with an estimated datarate of 0.1Hz")
            samplingPeriod = 10
BRONES Romain's avatar
BRONES Romain committed

        else:
            self.logger.error("Archive mode not implemented in this script")
            raise NotImplemented("Archive mode not implemented in this script")
        # Evaluate the number of points
        N = (dateStop-dateStart).total_seconds()/samplingPeriod
        self.logger.debug("Which leads to %d points to extract."%est_N)
BRONES Romain's avatar
BRONES Romain committed

BRONES Romain's avatar
BRONES Romain committed

    ##---------------------------------------------------------------------------##
    def BetweenDates(
            self,
            attr,
            dateStart,
            dateStop=datetime.datetime.now(),
            ):
        """
        Query attribute data from an archiver database, get all points between dates.
        Use ExtractBetweenDates.

        Parameters
        ----------
        attr : String
            Name of the attribute. Full Tango name i.e. "test/dg/panda/current".

        dateStart : datetime.datetime
            Start date for extraction.

        dateStop : datetime.datetime
            Stop date for extraction.
            Default is now (datetime.datetime.now())

        Exceptions
        ----------
        ValueError
            The attribute is not found in the database.

        Returns
        -------
        [date, value] : array
            date : numpy.ndarray of datetime.datime objects
                Dates of the values
            value : numpy.ndarray
                Archived values

        """

        # Check and estimate the number of points
        est_N = self.evalPoints(attribute, dateStart, dateStop)

        # If data chunk is too much, we need to cut it
        if est_N > Nmax:
            dt = datetime.timedelta(seconds=samplingPeriod)*Nmax
            cdates = [dateStart]
            while cdates[-1] < dateStop:
                cdates.append(cdates[-1]+dt)
            cdates[-1] = dateStop
            self.logger.debug("Cutting access to %d little chunks of time, %s each."%(len(cdates)-1, dt))
        else:
            cdates=[dateStart, dateStop]

        # Arrays to hold every chunks
        value = []
        date = []

        # For each date chunk
        for i_d in range(len(cdates)-1):
            # Make retrieval request
            self.logger.debug("Perform ExtractBetweenDates (%s, %s, %s)"%(
                attr,
                cdates[i_d].strftime(DBDFMT),
                cdates[i_d+1].strftime(DBDFMT))
                )

            _date, _value = self.extractor.ExtractBetweenDates([
                attr,
                cdates[i_d].strftime(DBDFMT),
                cdates[i_d+1].strftime(DBDFMT)
                ])

            # Transform to datetime - value arrays
            _value = np.asarray(_value, dtype=float)
            if len(_date) > 0:
                _date = ArrayTimeStampToDatetime(_date/1000.0)

            value.append(_value)
            date.append(_date)

        self.logger.debug("Concatenate chunks")
        value = np.concatenate(value)
        date = np.concatenate(date)


        self.logger.debug("Extraction done for %s."%attr)
        return [date, value]

    ##---------------------------------------------------------------------------##
    def query_ADB_BetweenDates_MinMaxMean(
                                            attr,
                                            dateStart,
                                            dateStop=datetime.datetime.now(),
                                            timeinterval=datetime.timedelta(seconds=60),
                                            extractor="archiving/TDBExtractor/4"):
        """
        Query attribute data from archiver database.
        Divide the time range in time intervals.
        Get min, max and mean value on each time interval.
        The date stamp is in the middle of the interval.

        Parameters
        ----------
        attr : String
            Name of the attribute. Full Tango name i.e. "test/dg/panda/current".

        dateStart : datetime.datetime
            Start date for extraction.

        dateStop : datetime.datetime
            Stop date for extraction.
            Default is now (datetime.datetime.now())

        timeinterval : datetime.timedelta
            Interval time to divide the time range in chunks.
            Default is 1 minute.

        extractor : String
            Name of the DB Extractor device.
            Default is "archiving/TDBExtractor/4"

        Exceptions
        ----------
        ValueError
            The attribute is not found in the database.

        Returns
        -------
        [date, value] : array
            date : numpy.ndarray of datetime.datime objects
                Dates of the values
            value : numpy.ndarray
                Archived values

        """

        # TEMP Dev not finished
        logger.error("Feature not implemented yet.")
        return

        # Device Proxy to DB
        logger.debug("Instantiate proxy to %s"%extractor)
        ADB = tango.DeviceProxy(extractor)

        # Give the DB extractor 3 seconds timeout
        ADB.set_timeout_millis(3000)

        # Check that the attribute is in the database
        logger.debug("Check that %s is archived."%attr)
        if not ADB.IsArchived(attr):
            logger.error("Attribute '%s' is not archived in DB %s"%(attr, extractor))
            raise ValueError("Attribute '%s' is not archived in DB %s"%(attr, extractor))

        # Cut data range in time chunks
        cdates = [dateStart]
        while cdates[-1] < dateStop:
            cdates.append(cdates[-1]+timeinterval)
        cdates[-1] = dateStop
        logger.debug("Cutting time range to %d chunks of time, %s each."%(len(cdates)-1, dt))
BRONES Romain's avatar
BRONES Romain committed

        # Prepare arrays
        value_min = np.empty(len(cdates-1))
        value_max = np.empty(len(cdates-1))
        value_mean = np.empty(len(cdates-1))
BRONES Romain's avatar
BRONES Romain committed

        # For each time chunk
        for i_d in range(len(cdates)-1):
            # Make requests
            logger.debug("Perform GetAttDataMaxBetweenDates (%s, %s, %s)"%(
                attr,
                cdates[i_d].strftime(DBDFMT),
                cdates[i_d+1].strftime(DBDFMT))
                )
BRONES Romain's avatar
BRONES Romain committed

            ADB.GetAttDataMaxBetweenDates([
                attr,
                cdates[i_d].strftime(DBDFMT),
                cdates[i_d+1].strftime(DBDFMT)
                ])
    ##---------------------------------------------------------------------------##
    def query_ADB_NearestValue(attr,
                                dates,
                                extractor="archiving/TDBExtractor/4"):
        """
        Query attribute data from an archiver database, get nearest points from dates.
        Use GetNearestValue and perform multiple calls.
        For each date in dates, it read the closest sampled value.
        Return the real dates of the samples.
BRONES Romain's avatar
BRONES Romain committed

        Parameters
        ----------
        attr : String
            Name of the attribute. Full Tango name i.e. "test/dg/panda/current".
        dates : numpy.ndarray of datetime.datetime
            Dates for extraction.
        extractor : String
            Name of the DB Extractor device.
            Default is "archiving/TDBExtractor/4"
        Exceptions
        ----------
        ValueError
            The attribute is not found in the database.
        Returns
        -------
        [realdate, value] : array
            realdate : numpy.ndarray of datetime.datime objects
                Dates of the values
            value : numpy.ndarray
                Archived values
BRONES Romain's avatar
BRONES Romain committed

        # Device Proxy to DB
        ADB = tango.DeviceProxy(extractor)
BRONES Romain's avatar
BRONES Romain committed

        # Give the DB extractor 3 seconds timeout
        ADB.set_timeout_millis(3000)
BRONES Romain's avatar
BRONES Romain committed

        # Check that the attribute is in the database
        if not ADB.IsArchived(attr):
            raise ValueError("Attribute '%s' is not archived in DB %s"%(attr, extractor))
BRONES Romain's avatar
BRONES Romain committed

        # Prepare arrays
        value = np.empty(len(dates), dtype=float)
        realdate = np.empty(len(dates), dtype=object)
        # Loop on dates
        for i in range(len(dates)):
            # Make retrieval
            answ = ADB.GetNearestValue([attr, dates[i].strftime(DBDFMT2)])
            answ = answ.split(";")
            realdate[i] = datetime.datetime.fromtimestamp(int(answ[0])/1000)
            value[i] = answ[1]
BRONES Romain's avatar
BRONES Romain committed

        return [realdate, value]
BRONES Romain's avatar
BRONES Romain committed