Skip to content
Snippets Groups Projects
Commit c611185b authored by Gamelin Alexis's avatar Gamelin Alexis
Browse files

Initial commit

parent d7f94db1
No related branches found
No related tags found
No related merge requests found
*__pycache__*
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 14 12:25:30 2020
@author: gamelina
"""
# -*- coding: utf-8 -*-
"""
General calculations about instabilities
@author: Alexis Gamelin
@date: 15/01/2020
"""
from scipy.constants import c, m_e, e, pi, epsilon_0
def MBI_threshold(ring, sigma, R, b):
"""
Compute the microbunching instability (MBI) threshold for a bunched beam
considering the steady-state parallel plate model [1][2].
Parameters
----------
ring : Synchrotron object
sigma : float
RMS bunch length in [s]
R : float
dipole bending radius in [m]
b : float
vertical distance between the conducting parallel plates in [m]
Returns
-------
I : float
MBI current threshold
[1] : Y. Cai, "Theory of microwave instability and coherent synchrotron
radiation in electron storage rings", SLAC-PUB-14561
[2] : D. Zhou, "Coherent synchrotron radiation and microwave instability in
electron storage rings", PhD thesis, p112
"""
Ia = 4*pi*epsilon_0*m_e*c**3/e # Alfven current
chi = sigma*(R/b**3)**(1/2) # Shielding paramter
xi = 0.5 + 0.34*chi
N = (ring.L0 * Ia * ring.ac * ring.gamma * ring.sigma_delta**2 * xi *
sigma**(1/3) / ( c * e * R**(1/3) ))
I = N*e/ring.T0
return I
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Define resistive wall elements based on the Wakefield class.
@author: Alexis Gamelin
@date: 14/01/2020
"""
import numpy as np
from scipy.constants import mu_0, epsilon_0, c
from CollectiveEffect.wakefield import Wakefield, Impedance
def skin_depth(omega, rho, mu_r = 1, epsilon_r = 1):
""" General formula for the skin depth
Parameters
----------
omega: angular frequency in [Hz]
rho: resistivity in [ohm.m]
mu_r : relative magnetic permeability, optional
epsilon_r : relative electric permittivity, optional
Returns
-------
delta : skin depth in [m]
"""
delta = np.sqrt(2*rho/(np.abs(omega)*mu_r*mu_0))*np.sqrt(np.sqrt(1 +
(rho*np.abs(omega)*epsilon_r*epsilon_0)**2 )
+ rho*np.abs(omega)*epsilon_r*epsilon_0)
return delta
class CircularResistiveWall(Wakefield):
"""
Resistive wall Wakefield element for a circular beam pipe, approximated
formulas from Eq. (2.77) of Chao book [1].
Parameters
----------
frequency: frequency points where the impedance will be evaluated in [Hz]
length: beam pipe length in [m]
rho: resistivity in [ohm.m]
radius: beam pipe radius in [m]
mu_r : relative magnetic permeability, optional
epsilon_r : relative electric permittivity, optional
"""
def __init__(self, frequency, length, rho, radius, mu_r = 1, epsilon_r = 1):
super().__init__()
omega = 2*np.pi*frequency
Z1 = length*(1 + np.sign(omega)*1j)*rho/(
2*np.pi*radius*skin_depth(omega,rho))
Z2 = c/omega*length*(1 + np.sign(omega)*1j)*rho/(
np.pi*radius**3*skin_depth(omega,rho))
Zlong = Impedance(variable = frequency, function = Z1, impedance_type='long')
Zxdip = Impedance(variable = frequency, function = Z2, impedance_type='xdip')
Zydip = Impedance(variable = frequency, function = Z2, impedance_type='ydip')
super().append_to_model(Zlong)
super().append_to_model(Zxdip)
super().append_to_model(Zydip)
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Tools and utilities functions for the Wakefield and impedances classes.
@author: Alexis Gamelin
@date: 14/01/2020
"""
import pandas as pd
import numpy as np
from scipy.integrate import trapz
from CollectiveEffect.wakefield import Wakefield, Impedance, WakeFunction
#from ..Tracking.synchrotron import Synchrotron
def read_CST(file, impedance_type='long'):
"""Read CST file format into an Impedance object."""
df = pd.read_csv(file, comment="#", header = None, sep = "\t",
names = ["Frequency","Real","Imaginary"])
df["Frequency"] = df["Frequency"]*1e9
df.set_index("Frequency", inplace = True)
result = Impedance(variable = df.index,
function = df["Real"] + 1j*df["Imaginary"],
impedance_type=impedance_type)
return result
def read_IW2D(file, impedance_type='long'):
"""Read IW2D file format into an Impedance object."""
df = pd.read_csv(file, sep = ' ', header = None,
names = ["Frequency","Real","Imaginary"], skiprows=1)
df.set_index("Frequency", inplace = True)
result = Impedance(variable = df.index,
function = df["Real"] + 1j*df["Imaginary"],
impedance_type=impedance_type)
return result
def loss_factor(wake, sigma):
"""
Compute the loss factor or the kick factor of a Wakefield, Impedance or
WakeFunction for a Gaussian bunch. Formulas from Eq. (2) p239 and
Eq.(7) p240 of [1].
Parameters
----------
wake: Wakefield, Impedance or WakeFunction object.
sigma: RMS bunch length in [s]
Returns
-------
kloss: loss factor in [V/C] or kick factor in [V/C/m] depanding on the
impedance type.
[1] Handbook of accelerator physics and engineering, 3rd printing.
"""
if isinstance(wake, Impedance):
positive_index = wake.data.index > 0
omega = 2*np.pi*wake.data.index[positive_index]
gaussian_spectrum = np.exp(-1*omega**2*sigma**2)
if(wake.impedance_type == "long"):
kloss = trapz(x = omega,
y = 1/np.pi*wake.data["real"][positive_index]*gaussian_spectrum)
if(wake.impedance_type == "xdip" or wake.impedance_type == "ydip"):
kloss = trapz(x = omega,
y = 1/np.pi*wake.data["imag"][positive_index]*gaussian_spectrum)
if isinstance(wake, WakeFunction):
# To be implemented.
pass
if isinstance(wake, Wakefield):
# To be implemented. Create field in wakefield with values ?
pass
return kloss
def spectral_density(frequency, sigma, m = 1, mode="Hermite"):
"""
Compute the spectral density of different modes for various values of the
head-tail mode number, based on Table 1 p238 of [1].
Parameters
----------
frequency : list or numpy array
sample points of the spectral density in [Hz]
sigma : float
RMS bunch length in [s]
m : int, optional
head-tail (or azimutal/synchrotron) mode number
mode: str, optional
type of the mode taken into account for the computation:
-"Hermite" modes for Gaussian bunches
Returns
-------
numpy array
[1] Handbook of accelerator physics and engineering, 3rd printing.
"""
if mode == "Hermite":
return (2*np.pi*frequency*sigma)**(2*m)*np.exp(
-1*(2*np.pi*frequency*sigma)**2)
else:
raise NotImplementedError("Not implemanted yet.")
def effective_impedance(ring, imp, m, mu, sigma, xi=None, mode="Hermite"):
"""
Compute the effective (longitudinal or transverse) impedance.
Formulas from Eq. (1) and (2) p238 of [1].
Parameters
----------
ring : Synchrotron object
imp : Impedance object
mu : int
coupled bunch mode number, goes from 0 to (M-1) where M is the
number of bunches
m : int
head-tail (or azimutal/synchrotron) mode number
sigma : float
RMS bunch length in [s]
xi : float, optional
(non-normalized) chromaticity
mode: str, optional
type of the mode taken into account for the computation:
-"Hermite" modes for Gaussian bunches
Returns
-------
Zeff : float
effective impedance in [ohm] or in [ohm/m] depanding on the impedance
type.
[1] Handbook of accelerator physics and engineering, 3rd printing.
"""
if not isinstance(imp, Impedance):
raise TypeError("{} should be an Impedance object.".format(imp))
fmin = imp.data.index.min()
fmax = imp.data.index.max()
if fmin > 0:
raise ValueError("A double sided impedance spectrum, with positive and"
" negative frequencies, is needed to compute the "
"effective impedance.")
if mode == "Hermite":
def h(f):
return spectral_density(frequency=f, sigma=sigma, m=m,
mode="Hermite")
else:
raise NotImplementedError("Not implemanted yet.")
M = 416
pmax = fmax/(ring.f0 * M) - 50
pmin = fmin/(ring.f0 * M) + 50
p = np.arange(pmin,pmax+1)
if imp.impedance_type == "long":
fp = ring.f0*(p*M + mu + m*ring.tune[2])
fp = fp[np.nonzero(fp)] # Avoid division by 0
num = np.sum( imp(fp) * h(fp) / (fp*2*np.pi) )
den = np.sum( h(fp) )
Zeff = num/den
elif imp.impedance_type == "xdip" or imp.impedance_type == "ydip":
if imp.impedance_type == "xdip":
tuneXY = ring.tune[0]
xi = ring.chro[0]
elif imp.impedance_type == "ydip":
tuneXY = ring.tune[1]
xi = ring.chro[1]
fp = ring.f0*(p*M + mu + tuneXY + m*ring.tuneS)
f_xi = xi/ring.eta*ring.f0
num = np.sum( imp(fp) * h(fp - f_xi) )
den = np.sum( h(fp - f_xi) )
Zeff = num/den
else:
raise TypeError("Effective impedance is only defined for long, xdip"
" and ydip impedance type.")
return Zeff
# -*- coding: utf-8 -*-
"""
This module defines general classes to describes wakefields, impedances and
wake functions. Based on impedance library by David Amorim.
@author: David Amorin, Alexis Gamelin
@date: 14/01/2020
"""
import warnings
import re
import pandas as pd
import numpy as np
from scipy.interpolate import interp1d
class ComplexData:
"""
Define a general data structure for a complex function based on a pandas
DataFrame.
Parameters
----------
variable : list, numpy array
contains the function variable values
function : list or numpy array of complex numbers
contains the values taken by the complex function
"""
def __init__(self, variable=np.array([-1e15, 1e15]),
function=np.array([0, 0])):
self.data = pd.DataFrame({'real': np.real(function),
'imag': np.imag(function)},
index=variable)
self.data.index.name = 'variable'
def add(self, structure_to_add, method='zero', interp_kind='cubic'):
"""
Method to add two structures. If the data don't have the same length,
different cases are handled.
Parameters
----------
structure_to_add : ComplexData object, int, float or complex.
structure to be added.
method : str, optional
manage how the addition is done, possibilties are:
-common: the common range of the index (variable) from the two
structures is used. The input data are cross-interpolated
so that the result data contains the points at all initial
points in the common domain.
-extrapolate: extrapolate the value of both ComplexData.
-zero: outside of the common range, the missing values are zero. In
the common range, behave as "common" method.
interp_kind : str, optional
interpolation method which is passed to pandas and to
scipy.interpolate.interp1d.
Returns
-------
ComplexData
Contains the sum of the two inputs.
"""
# Create first two new DataFrames merging the variable
# from the two input data
if isinstance(structure_to_add, (int, float, complex)):
structure_to_add = ComplexData(
variable=self.data.index,
function=structure_to_add * np.ones(len(self.data.index)))
initial_data = pd.concat(
[self.data,
structure_to_add.data.index.to_frame().set_index('variable')],
sort=True)
initial_data = initial_data[~initial_data.index.duplicated(keep='first')]
data_to_add = pd.concat(
[structure_to_add.data,
self.data.index.to_frame().set_index('variable')],
sort=True)
data_to_add = data_to_add[~data_to_add.index.duplicated(keep='first')]
if method == 'common':
max_variable = min(structure_to_add.data.index.max(),
self.data.index.max())
min_variable = max(structure_to_add.data.index.min(),
self.data.index.min())
initial_data = initial_data.interpolate(method=interp_kind)
mask = ((initial_data.index <= max_variable)
& (initial_data.index >= min_variable))
initial_data = initial_data[mask]
data_to_add = data_to_add.interpolate(method=interp_kind)
mask = ((data_to_add.index <= max_variable)
& (data_to_add.index >= min_variable))
data_to_add = data_to_add[mask]
result_structure = ComplexData()
result_structure.data = initial_data + data_to_add
return result_structure
if method == 'extrapolate':
print('Not there yet')
return self
if method == 'zero':
max_variable = min(structure_to_add.data.index.max(),
self.data.index.max())
min_variable = max(structure_to_add.data.index.min(),
self.data.index.min())
mask = ((initial_data.index <= max_variable)
& (initial_data.index >= min_variable))
initial_data[mask] = initial_data[mask].interpolate(method=interp_kind)
mask = ((data_to_add.index <= max_variable)
& (data_to_add.index >= min_variable))
data_to_add[mask] = data_to_add[mask].interpolate(method=interp_kind)
initial_data.replace(to_replace=np.nan, value=0, inplace=True)
data_to_add.replace(to_replace=np.nan, value=0, inplace=True)
result_structure = ComplexData()
result_structure.data = initial_data + data_to_add
return result_structure
def __radd__(self, structure_to_add):
return self.add(structure_to_add, method='zero')
def __add__(self, structure_to_add):
return self.add(structure_to_add, method='zero')
def multiply(self, factor):
"""
Multiply a data strucure with a float or an int.
If the multiplication is done with something else, throw a warning.
"""
if isinstance(factor, (int, float)):
result_structure = ComplexData()
result_structure.data = self.data * factor
return result_structure
else:
warnings.warn(('The multiplication factor is not a float '
'or an int.'), UserWarning)
return self
def __mul__(self, factor):
return self.multiply(factor)
def __rmul__(self, factor):
return self.multiply(factor)
def __call__(self, values, interp_kind="cubic"):
"""
Interpolation of the data by calling the class to have a function-like
behaviour.
Parameters
----------
values : list or numpy array of complex, int or float
values to be interpolated.
interp_kind : str, optional
interpolation method which is passed to scipy.interpolate.interp1d.
Returns
-------
numpy array
Contains the interpolated data.
"""
real_func = interp1d(x = self.data.index,
y = self.data["real"], kind=interp_kind)
imag_func = interp1d(x = self.data.index,
y = self.data["imag"], kind=interp_kind)
return real_func(values) + 1j*imag_func(values)
class WakeFunction(ComplexData):
"""
Define a WakeFunction object based on a ComplexData object.
"""
def __init__(self,
variable=np.array([-1e15, 1e15]),
function=np.array([0, 0]), wake_type='long'):
super().__init__(variable, function)
pass
class Impedance(ComplexData):
"""
Define an Impedance object based on a ComplexData object.
"""
def __init__(self,
variable=np.array([-1e15, 1e15]),
function=np.array([0, 0]), impedance_type='long'):
super().__init__(variable, function)
self._impedance_type = impedance_type
self.data.index.name = 'frequency [Hz]'
self.initialize_impedance_coefficient()
def initialize_impedance_coefficient(self):
"""
Define the impedance coefficients and the plane of the impedance that
are presents in attributes of the class.
"""
table = self.impedance_name_and_coefficients_table()
try:
component_coefficients = table[self.impedance_type].to_dict()
except KeyError:
print('Impedance type {} does not exist'.format(self.impedance_type))
self.a = component_coefficients["a"]
self.b = component_coefficients["b"]
self.c = component_coefficients["c"]
self.d = component_coefficients["d"]
self.plane = component_coefficients["plane"]
def impedance_name_and_coefficients_table(self):
"""
Return a table associating the human readbale names of an impedance
component and its associated coefficients and plane.
"""
component_dict = {
'long': {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'plane': 'z'},
'xcst': {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'plane': 'x'},
'ycst': {'a': 0, 'b': 0, 'c': 0, 'd': 0, 'plane': 'y'},
'xdip': {'a': 1, 'b': 0, 'c': 0, 'd': 0, 'plane': 'x'},
'ydip': {'a': 0, 'b': 1, 'c': 0, 'd': 0, 'plane': 'y'},
'xydip': {'a': 0, 'b': 1, 'c': 0, 'd': 0, 'plane': 'x'},
'yxdip': {'a': 1, 'b': 0, 'c': 0, 'd': 0, 'plane': 'y'},
'xquad': {'a': 0, 'b': 0, 'c': 1, 'd': 0, 'plane': 'x'},
'yquad': {'a': 0, 'b': 0, 'c': 0, 'd': 1, 'plane': 'y'},
'xyquad': {'a': 0, 'b': 0, 'c': 0, 'd': 1, 'plane': 'x'},
'yxquad': {'a': 0, 'b': 0, 'c': 1, 'd': 0, 'plane': 'y'},
}
return pd.DataFrame(component_dict)
def add(self, structure_to_add, beta_x=1, beta_y=1, method='zero'):
"""
Method to add two Impedance objects. The two structures are
compared so that the addition is self-consistent.
Beta functions can be precised as well.
"""
if isinstance(structure_to_add, (int, float, complex)):
result = super().add(structure_to_add, method=method)
elif isinstance(structure_to_add, Impedance):
if (self.impedance_type == structure_to_add.impedance_type):
weight = (beta_x ** self.power_x) * (beta_y ** self.power_y)
result = super().add(structure_to_add * weight, method=method)
else:
warnings.warn(('The two Impedance objects do not have the '
'same coordinates or plane or type. '
'Returning initial Impedance object.'),
UserWarning)
result = self
impedance_to_return = Impedance(
result.data.index,
result.data.real.values + 1j*result.data.imag.values,
self.impedance_type)
return impedance_to_return
def __radd__(self, structure_to_add):
return self.add(structure_to_add)
def __add__(self, structure_to_add):
return self.add(structure_to_add)
def multiply(self, factor):
"""
Multiply a Impedance object with a float or an int.
If the multiplication is done with something else, throw a warning.
"""
result = super().multiply(factor)
impedance_to_return = Impedance(
result.data.index,
result.data.real.values + 1j*result.data.imag.values,
self.impedance_type)
return impedance_to_return
def __mul__(self, factor):
return self.multiply(factor)
def __rmul__(self, factor):
return self.multiply(factor)
@property
def impedance_type(self):
return self._impedance_type
@impedance_type.setter
def impedance_type(self, value):
self._impedance_type = value
self.initialize_impedance_coefficient()
@property
def power_x(self):
power_x = self.a/2 + self.c/2.
if self.plane == 'x':
power_x += 1./2.
return power_x
@property
def power_y(self):
power_y = self.b/2. + self.d/2.
if self.plane == 'y':
power_y += 1./2.
return power_y
class Wakefield:
"""
Define a general Wakefield machine element.
It contains Imepdance or WakeFunction objects which defines the wakefield
and other informations: beta functions.
"""
def __init__(self, betax=1, betay=1, structure_list=[]):
self.betax = betax
self.betay = betay
self.list_to_attr(structure_list)
def append_to_model(self, structure_to_add):
list_of_attributes = dir(self)
if isinstance(structure_to_add, Impedance):
attribute_name = "Z" + structure_to_add.impedance_type
if attribute_name in list_of_attributes:
raise ValueError("There is already a component of the type "
"{} in this element.".format(attribute_name))
else:
self.__setattr__(attribute_name, structure_to_add)
elif isinstance(structure_to_add, WakeFunction):
attribute_name = "W" + structure_to_add.impedance_type
if attribute_name in list_of_attributes:
raise ValueError("There is already a component of the type "
"{} in this element.".format(attribute_name))
else:
self.__setattr__(attribute_name, structure_to_add)
else:
raise ValueError("{} is not an Impedance nor a WakeFunction.".format(structure_to_add))
def list_to_attr(self, structure_list):
for component in structure_list:
self.append_to_model(component)
@property
def list_impedance_components(self):
"""
Return the list of impedance components for the element,
based on the attributes names.
"""
return np.array([comp for comp in dir(self) if re.match(r'[Z]', comp)])
def add(self, element_to_add):
"""
This function adds two Wakefield objects.
The different impedance components are weighted and added.
The result is a Wakefield object with all the components but the
beta function equal to 1.
"""
if not isinstance(element_to_add, Wakefield):
raise TypeError("You can only add Wakefield objects to other"
"Wakefields objects.")
list_of_summed_impedances = []
list_of_components_added = []
betax1 = self.betax
betay1 = self.betay
betax2 = element_to_add.betax
betay2 = element_to_add.betay
# We first go through element1 impedance components and add them
# to the element2 components. If the component is missing in element2,
# we then simply weight the element1 component and add it to the model.
for component_name in self.list_impedance_components:
element1_impedance = self.__getattribute__(component_name)
element1_weight = ((betax1 ** element1_impedance.power_x)
* (betay1 ** element1_impedance.power_y))
try:
element2_impedance = element_to_add.__getattribute__(component_name)
list_of_components_added.append(component_name)
element12_impedance_sum = element1_weight * element1_impedance
element12_impedance_sum = element12_impedance_sum.add(element2_impedance, betax2, betay2)
except:
element12_impedance_sum = element1_weight * element1_impedance
list_of_summed_impedances.append(element12_impedance_sum)
# We now go through the components which are unique to element2 and
# add them to the impedance model, with the beta function weighting
missing_components_list = list(set(element_to_add.list_impedance_components) -
set(list_of_components_added))
for component_name in missing_components_list:
element2_impedance = element_to_add.__getattribute__(component_name)
element2_weight = ((betax2 ** element2_impedance.power_x)
* (betay2 ** element2_impedance.power_y))
element12_impedance_sum = element2_weight * element2_impedance
list_of_summed_impedances.append(element12_impedance_sum)
# Gather everything in an Wakefield object
sum_wakefield = Wakefield(betax=1., betay=1.,
structure_list=list_of_summed_impedances)
return sum_wakefield
def __radd__(self, structure_to_add):
return self.add(structure_to_add)
def __add__(self, structure_to_add):
return self.add(structure_to_add)
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 14 18:11:33 2020
@author: gamelina
"""
# -*- coding: utf-8 -*-
"""
SOLEIL synchrotron parameters script.
@author: Alexis Gamelin
@date: 14/01/2020
"""
import numpy as np
from Tracking.synchrotron import Synchrotron, Electron, Optics
from Tracking.beam import Beam
def soleil(mode = 'Uniform'):
"""
"""
h = 416
L = 3.540969742590899e+02
E0 = 2.75e9
particle = Electron()
ac = 4.16e-4
U0 = 1171e3
tau = np.array([0, 0, 3.27e-3])
tune = np.array([18.15687, 10.22824, 0.00502])
emit = np.array([4.5e-9, 4.5e-9*0.01])
sigma_0 = 8e-12
sigma_delta = 9e-4
# mean values
beta = np.array([3, 1.3])
alpha = np.array([0, 0])
mean_val = Optics(beta, alpha)
ring = Synchrotron(h, L, E0, particle, ac=ac, U0=U0, tau=tau,
mean_optics=mean_val, emit=emit, tune=tune,
sigma_delta=sigma_delta, sigma_0=sigma_0)
if mode == 'Uniform':
beam = Beam(ring, )
elif mode == 'Hybrid':
pass
elif mode == 'Low alpha/25':
pass
elif mode == 'Low alpha/25':
pass
elif mode == '8 bunches':
pass
elif mode == 'Single':
pass
else:
raise ValueError("{} is not a correct operation mode.".format(mode))
return ring
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 14 18:11:33 2020
@author: gamelina
"""
# -*- coding: utf-8 -*-
"""
Beam and bunch elements
@author: Alexis Gamelin
@date: 17/01/2020
"""
import numpy as np
import numpy.ma as ma
import warnings
class Bunch:
"""
Define a bunch
Parameters
----------
ring : Synchrotron object
mp_number : float, optional
Macro-particle number
current : float, optional
Bunch current in [A]
Attributes
----------
mp_number : int
Macro-particle number
charge : float
Bunch charge in [C]
charge_per_mp : float
Charge per macro-particle in [C]
particle_number : int
Number of particles in the bunch
current : float
Bunch current in [A]
Methods
------
stats()
Compute the mean and the standard deviation of alive particles for each
coordinates.
init_gaussian(cov=None, mean=None, **kwargs)
Initialize bunch particles with 6D gaussian phase space.
"""
def __init__(self, ring, mp_number=1e3, current=1e-3):
dpart = np.dtype([("x",np.float64),("xp",np.float64),
("y",np.float64),("yp",np.float64),
("tau",np.float64),("delta",np.float64)])
self.dtype = dpart
particles = np.zeros((int(mp_number),6), dtype=np.float64)
self.particles = ma.masked_array(particles)
self.ring = ring
self._mp_number = int(mp_number)
self.current = current
def __len__(self):
"""Return the number of alive particles"""
#mask = self.particles["alive"] == True
return len(self.particles)
def __getitem__(self, i):
"""Return the alive particle number i"""
return self.particles[i]
def __setitem__(self, i, value):
"""Set value to the alive particle number i"""
self.particles[i] = value
def __iter__(self):
"""Iterate over alive particles"""
return self.particles.__iter__()
@property
def mp_number(self):
"""Macro-particle number"""
return self._mp_number
@mp_number.setter
def mp_number(self, value):
self._mp_number = int(value)
self.__init__(self.ring, value, self.charge)
@property
def charge_per_mp(self):
"""Charge per macro-particle [C]"""
return self._charge_per_mp
@charge_per_mp.setter
def charge_per_mp(self, value):
self._charge_per_mp = value
@property
def charge(self):
"""Bunch charge in [C]"""
return self.__len__()*self.charge_per_mp
@charge.setter
def charge(self, value):
self.charge_per_mp = value / self.__len__()
@property
def particle_number(self):
"""Particle number"""
return int(self.charge / np.abs(self.ring.particle.charge))
@particle_number.setter
def particle_number(self, value):
self.charge_per_mp = value * self.ring.particle.charge / self.__len__()
@property
def current(self):
"""Bunch current [A]"""
return self.charge / self.ring.T0
@current.setter
def current(self, value):
self.charge_per_mp = value * self.ring.T0 / self.__len__()
def mean(self):
"""
Compute the mean position of alive particles for each
coordinates.
Returns
-------
mean : numpy array
mean position of alive particles
"""
mean = [[self[name].mean()] for name in self.dtype.names]
return np.array(mean)
def std(self):
"""
Compute the standard deviation of the position of alive
particles for each coordinates.
Returns
-------
std : numpy array
standard deviation of the position of alive particles
"""
std = [[self[name].std()] for name in self.dtype.names]
return np.array(std)
def emit(self):
"""
Compute the bunch emittance for each plane [1].
Correct definition of long emit ?
Returns
-------
emit : numpy array
bunch emittance
References
----------
[1] Wiedemann, H. (2015). Particle accelerator physics. 4th
edition. Springer, Eq.(8.39) of p224.
"""
emitX = (np.mean(self['x']**2)*np.mean(self['xp']**2) -
np.mean(self['x']*self['xp'])**2)**(0.5)
emitY = (np.mean(self['y']**2)*np.mean(self['yp']**2) -
np.mean(self['y']*self['yp'])**2)**(0.5)
emitS = (np.mean(self['tau']**2)*np.mean(self['delta']**2) -
np.mean(self['tau']*self['delta'])**2)**(0.5)
return np.array([emitX, emitY, emitS])
def init_gaussian(self, cov=None, mean=None, **kwargs):
"""
Initialize bunch particles with 6D gaussian phase space.
Covariance matrix is taken from [1].
Parameters
----------
cov : (6,6) array, optional
Covariance matrix of the bunch distribution
mean : (6,) array, optional
Mean of the bunch distribution
References
----------
[1] Wiedemann, H. (2015). Particle accelerator physics. 4th
edition. Springer, Eq.(8.38) of p223.
"""
if mean is None:
mean = np.zeros((6,))
if cov is None:
sigma_0 = kwargs.get("sigma_0", self.ring.sigma_0)
sigma_delta = kwargs.get("sigma_delta", self.ring.sigma_delta)
optics = kwargs.get("optics", self.ring.mean_optics)
cov = np.zeros((6,6))
cov[0,0] = self.ring.emit[0]*optics.beta[0]
cov[1,1] = self.ring.emit[0]*optics.gamma[0]
cov[0,1] = -1*self.ring.emit[0]*optics.alpha[0]
cov[1,0] = -1*self.ring.emit[0]*optics.alpha[0]
cov[2,2] = self.ring.emit[1]*optics.beta[1]
cov[3,3] = self.ring.emit[1]*optics.gamma[1]
cov[2,3] = -1*self.ring.emit[1]*optics.alpha[1]
cov[3,2] = -1*self.ring.emit[1]*optics.alpha[1]
cov[4,4] = sigma_0**2
cov[5,5] = sigma_delta**2
values = np.random.multivariate_normal(mean, cov, size=self.mp_number)
self.particles["x"] = values[:,0]
self.particles["xp"] = values[:,1]
self.particles["y"] = values[:,2]
self.particles["yp"] = values[:,3]
self.particles["tau"] = values[:,4]
self.particles["delta"] = values[:,5]
class Beam:
"""
Define a Beam object composed of several Bunch objects.
Parameters
----------
ring : Synchrotron object
bunch_list : list of Bunch object, optional
Attributes
----------
current : float
Total beam current in [A]
charge : float
Total bunch charge in [C]
particle_number : int
Total number of particle in the beam
filling_pattern : list of bool
Filling pattern of the beam
Methods
------
init_beam()
"""
def __init__(self, ring, bunch_list=None):
self.ring = ring
if bunch_list is None:
self.init_beam(np.zeros((self.ring.h,1),dtype=bool))
else:
if (len(bunch_list) != self.ring.h):
raise ValueError(("The length of the bunch list is {} ".format(len(bunch_list)) +
"but should be {}".format(self.ring.h)))
self.bunch_list = bunch_list
def __len__(self):
"""Return the number of bunches"""
length = 0
for bunch in self:
if bunch is not None:
length += 1
return length
def __getitem__(self, i):
"""Return the bunch number i"""
return self.bunch_list.__getitem__(i)
def __setitem__(self, i, value):
"""Set value to the bunch number i"""
self.bunch_list.__setitem__(i, value)
def __iter__(self):
"""Iterate over the bunches"""
return self.bunch_list.__iter__()
def init_beam(self, filling_pattern, current_per_bunch=1e-3,
mp_per_bunch=1e3):
"""
Initialize beam with a given filling pattern but with uniform current
per bunch and marco-particle number per bunch.
Parameters
----------
filling_pattern : numpy array or list of length ring.h
Filling pattern of the beam,
charge_per_bunch : float, optional
Charge per bunch in [C]
mp_per_bunch : float, optional
Macro-particle number per bunch
"""
if (len(filling_pattern) != self.ring.h):
raise ValueError(("The length of filling pattern is {} ".format(len(filling_pattern)) +
"but should be {}".format(self.ring.h)))
bunch_list = []
for value in filling_pattern:
if value == True:
bunch_list.append(Bunch(self.ring, mp_per_bunch, current_per_bunch))
elif value == False:
bunch_list.append(None)
else:
raise ValueError("{} should be True or False".format(value))
self.bunch_list = bunch_list
# init bunches => gauss
@property
def current(self):
"""Total beam current in [A]"""
current = 0
for bunch in self:
if bunch is not None:
current += bunch.current
return current
@property
def charge(self):
"""Total beam charge in [C]"""
charge = 0
for bunch in self:
if bunch is not None:
charge += bunch.charge
return charge
@property
def particle_number(self):
"""Total number of particle in the beam"""
particle_number = 0
for bunch in self:
if bunch is not None:
particle_number += bunch.particle_number
return particle_number
@property
def filling_pattern(self):
"""Filling pattern of the beam"""
filling_pattern = []
for bunch in self:
if isinstance(bunch, Bunch):
filling_pattern.append(True)
else:
filling_pattern.append(False)
return filling_pattern
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
General elements
@author: Alexis Gamelin
@date: 15/01/2020
"""
import numpy as np
from scipy.constants import c, m_e, m_p, e
class Particle:
""" Define a particle
Attributes
----------
mass : float
total particle mass in [kg]
charge : float
electrical charge in [C]
E_rest : float
particle rest energy in [eV]
"""
def __init__(self, mass, charge):
self.mass = mass
self.charge = charge
@property
def E_rest(self):
return self.mass * c ** 2 / e
class Electron(Particle):
""" Define an electron"""
def __init__(self):
super().__init__(m_e, -1*e)
class Proton(Particle):
""" Define a proton"""
def __init__(self):
super().__init__(m_p, e)
class Optics:
"""Handle optic functions"""
def __init__(self, beta, alpha):
self.beta = beta
self.alpha = alpha
@property
def gamma(self):
return (1 + self.alpha**2)/self.beta
class Synchrotron:
""" Synchrotron class to store main properties. """
def __init__(self, h, L, E0, particle, **kwargs):
self.particle = particle
self._h = h
self.L = L
self.E0 = E0 # Nominal (total) energy of the ring [eV]
self.ac = kwargs.get('ac') # Momentum compaction factor
self.U0 = kwargs.get('U0') # Energy loss per turn [eV]
self.tau = kwargs.get('tau') # X/Y/S damping times [s]
self.sigma_delta = kwargs.get('sigma_delta') # Equilibrium energy spread
self.sigma_0 = kwargs.get('sigma_0') # Natural bunch length [s]
self.tune = kwargs.get('tune') # X/Y/S tunes
self.emit = kwargs.get('emit') # X/Y emittances in [m.rad]
self.chro = kwargs.get('chro') # X/Y (non-normalized) chromaticities
self.mean_optics = kwargs.get('mean_optics') # Optics object with mean values
@property
def h(self):
"""Harmonic number"""
return self._h
@h.setter
def h(self,value):
self._h = value
self.L = self.L # call setter
@property
def L(self):
"""Ring circumference [m]"""
return self._L
@L.setter
def L(self,value):
self._L = value
self._T0 = self.L/c
self._f0 = 1/self.T0
self._omega0 = 2*np.pi*self.f0
self._f1 = self.h*self.f0
self._omega1 = 2*np.pi*self.f1
self._k1 = self.omega1/c
@property
def T0(self):
"""Revolution time [s]"""
return self._T0
@T0.setter
def T0(self, value):
self.L = c*value
@property
def f0(self):
"""Revolution frequency [Hz]"""
return self._f0
@f0.setter
def f0(self,value):
self.L = c/value
@property
def omega0(self):
"""Angular revolution frequency [Hz rad]"""
return self._omega0
@omega0.setter
def omega0(self,value):
self.L = 2*np.pi*c/value
@property
def f1(self):
"""Fundamental RF frequency [Hz]"""
return self._f1
@f1.setter
def f1(self,value):
self.L = self.h*c/value
@property
def omega1(self):
"""Fundamental RF angular frequency[Hz rad]"""
return self._omega1
@omega1.setter
def omega1(self,value):
self.L = 2*np.pi*self.h*c/value
@property
def k1(self):
"""Fundamental RF wave number [m**-1]"""
return self._k1
@k1.setter
def k1(self,value):
self.L = 2*np.pi*self.h/value
@property
def gamma(self):
"""Relativistic gamma"""
return self._gamma
@gamma.setter
def gamma(self, value):
self._gamma = value
self._beta = np.sqrt(1 - self.gamma**-2)
self._E0 = self.gamma*self.particle.mass*c**2/e
@property
def beta(self):
"""Relativistic beta"""
return self._beta
@beta.setter
def beta(self, value):
self.gamma = 1/np.sqrt(1-value**2)
@property
def E0(self):
"""Nominal (total) energy of the ring [eV]"""
return self._E0
@E0.setter
def E0(self, value):
self.gamma = value/(self.particle.mass*c**2/e)
@property
def eta(self):
"""Momentum compaction"""
return self.ac - 1/(self.gamma**2)
\ No newline at end of file
# -*- coding: utf-8 -*-
"""
Created on Tue Jan 14 18:11:33 2020
@author: gamelina
"""
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment