Skip to content
Snippets Groups Projects
Commit 9d21bd57 authored by Alexis GAMELIN's avatar Alexis GAMELIN
Browse files

Simplify FB classes

Damper class are now active on a single plane at a time
parent e0794e1f
No related branches found
No related tags found
No related merge requests found
# -*- coding: utf-8 -*-
"""
This module defines both simple and FIR based bunch by bunch feedback for
tracking.
This module defines both exponential and FIR based bunch by bunch damper
feedback for tracking.
"""
import numpy as np
import matplotlib.pyplot as plt
......@@ -15,12 +15,12 @@ class ExponentialDamper(Element):
----------
ring : Synchrotron object
Synchrotron to use.
plane : bool array of shape (3,)
Allow to choose on which planes the damper is active.
damping_time : array of shape (3,)
Contains the desired damping time in [s] for each plane.
plane : {"x","y","s"}
Allow to choose on which plane the damper is active.
damping_time : float
Damping time in [s].
phase_diff : array of shape (3,)
Contains the desired phase in degree for each plane.
Phase difference between the damper and the position monitor in [rad].
"""
def __init__(self, ring, plane, damping_time, phase_diff):
......@@ -28,7 +28,21 @@ class ExponentialDamper(Element):
self.damping_time = damping_time
self.phase_diff = phase_diff
self.plane = plane
if self.plane == "x":
self.action = "xp"
self.damp_idx = 0
self.mean_idx = 1
elif self.plane == "y":
self.action = "yp"
self.damp_idx = 1
self.mean_idx = 3
elif self.plane == "s":
self.action = "delta"
self.damp_idx = 2
self.mean_idx = 5
else:
raise ValueError(f"plane should be x, y or s, not {self.plane}")
@Element.parallel
def track(self, bunch):
"""
......@@ -40,71 +54,60 @@ class ExponentialDamper(Element):
----------
bunch : Bunch or Beam object
"""
if(self.plane[0] == True):
bunch["xp"] -= (2*self.ring.T0/self.damping_time[0])*np.sin(self.phase_diff[0])*bunch.mean[1]
if(self.plane[1] == True):
bunch["yp"] -= (2*self.ring.T0/self.damping_time[1])*np.sin(self.phase_diff[1])*bunch.mean[3]
if(self.plane[2] == True):
bunch["delta"] -= (2*self.ring.T0/self.damping_time[2])*np.sin(self.phase_diff[1])*bunch.mean[5]
bunch[self.action] -= (2*self.ring.T0/
self.damping_time[self.damp_idx]*
np.sin(self.phase_diff)*
bunch.mean[self.mean_idx])
class FIRDamper(Element) :
class FIRDamper(Element):
"""
Bunch by bunch damper feedback system based on FIR filters.
FIR computation is based on [1].
Parameters
----------
ring : Synchrotron object
Synchrotron to use.
plane : list of str
Allow to choose on which planes the damper is active.
Options are: {"x","y","s"}.
tune : float array of shape (3,)
Reference (betatron or synchrotron) tunes for which the damper system
plane : {"x","y","s"}
Allow to choose on which plane the damper is active.
tune : float
Reference (betatron or synchrotron) tune for which the damper system
is set.
turn_delay : int array of shape (3,)
Number of turn delay before applying kick.
tap_number : int array of shape (3,)
Number of tap for the FIR filters.
gain : float array of shape (3,)
Gain of the FIR filters.
phase : float array of shape (3,)
Phase of the FIR filters in degree.
bpm_error : float array of shape (3,), optional
Stores the BPM error in [m] for horizontal and vertical, and in [s] for
longitudinal.
max_kick : float array of shape (3,), optional
Stores the maximum kick limitation.
turn_delay : int
Number of turn delay before the kick is applied.
tap_number : int
Number of tap for the FIR filter.
gain : float
Gain of the FIR filter.
phase : float
Phase of the FIR filter in [degree].
meas_error : float, optional
RMS measurement error applied to the computed mean position.
Unit is [m] if the plane is "x" or "y" and [s] if the plane is "s".
The default is None.
max_kick : float, optional
Maximum kick strength limitation.
Unit is [rad] if the plane is "x" or "y" and no unit (delta) if the
plane is "s".
The default is None.
Attributes
----------
x_pos : array
Stored horizontal beam postion.
y_pos : array
Stored vertical beam postion.
tau_pos : array
Stored longitudinal beam postion.
kick_x : array
Stored horizontal kicks.
kick_y : array
Stored vertical kicks.
kick_tau : array
Stored longitudinal kicks.
coef_x : array
Coefficients of the FIR filter for the horizontal plane.
coef_y : array
Coefficients of the FIR filter for the vertical plane.
coef_tau : array
Coefficients of the FIR filter for the longitudinal plane.
pos : array
Stored beam postions.
kick : array
Stored damper kicks.
coef : array
Coefficients of the FIR filter.
Methods
-------
get_fir(tap_number, tune, phase, turn_delay, gain)
Initialize the FIR filter for the desired plane and return an array
containing the FIR coefficients.
plot_fir(plane)
Plot the gain and the phase of the selected FIR filter.
Initialize the FIR filter and return an array containing the FIR
coefficients.
plot_fir()
Plot the gain and the phase of the FIR filter.
track(beam_or_bunch)
Tracking method.
......@@ -116,8 +119,7 @@ class FIRDamper(Element) :
"""
def __init__(self, ring, plane, tune, turn_delay, tap_number, gain, phase,
bpm_error = np.zeros((3,)),
max_kick = np.zeros((3,))):
bpm_error=None, max_kick=None):
self.ring = ring
self.tune = tune
......@@ -129,29 +131,36 @@ class FIRDamper(Element) :
self.max_kick = max_kick
self.plane = plane
self.plane_dict = {"x":0 , "y":1 , "s":2}
if self.plane == "x":
self.action = "xp"
self.damp_idx = 0
self.mean_idx = 0
elif self.plane == "y":
self.action = "yp"
self.damp_idx = 1
self.mean_idx = 2
elif self.plane == "s":
self.action = "delta"
self.damp_idx = 2
self.mean_idx = 4
self.beam_no_mpi = False
self.x_pos = np.zeros((self.tap_number[0],1))
self.y_pos = np.zeros((self.tap_number[1],1))
self.tau_pos = np.zeros((self.tap_number[2],1))
self.kick_x = np.zeros((self.turn_delay[0]+1,1))
self.kick_y = np.zeros((self.turn_delay[1]+1,1))
self.kick_tau = np.zeros((self.turn_delay[2]+1,1))
self.coef_x = self.get_fir(self.tap_number[0], self.tune[0], self.phase[0], self.turn_delay[0], self.gain[0])
self.coef_y = self.get_fir(self.tap_number[1], self.tune[1], self.phase[1], self.turn_delay[1], self.gain[1])
self.coef_tau = self.get_fir(self.tap_number[2], self.tune[2], self.phase[2], self.turn_delay[2], self.gain[2])
self.pos = np.zeros((self.tap_number,1))
self.kick = np.zeros((self.turn_delay+1,1))
self.coef = self.get_fir(self.tap_number, self.tune, self.phase,
self.turn_delay, self.gain)
def get_fir(self, tap_number, tune, phase, turn_delay, gain):
"""
Compute the FIR coefficients for the selected plane(s).
This method is based on the FIR filter design algorithm developped by
T.Nakamura.
Compute the FIR coefficients.
FIR computation is based on [1].
Returns
-------
FIR_coef : array
Array containing the FIR coefficients for the selected plane(s).
Array containing the FIR coefficients.
"""
it = np.zeros((tap_number,))
CC = np.zeros((5, tap_number,))
......@@ -176,45 +185,36 @@ class FIRDamper(Element) :
FIR_coef = gain*(D[1][:]*np.cos(zeta) + D[2][:]*np.sin(zeta))
return FIR_coef
def plot_fir(self, plane):
def plot_fir(self):
"""
Plot the gain and the phase of the FIR filter for the desired plane.
Parameters
----------
plane : string
States "x" for the horizontal plane, "y" for the vertical and
"long" for the longitudinal one.
Plot the gain and the phase of the FIR filter.
Returns
-------
fig : Figure
Plot of the gain and phase.
"""
tune = np.arange(0, 1, 0.0001)
index_plane = self.plane_dict[plane]
if(plane == "x"):
coef = self.coef_x
elif(plane == "y"):
coef = self.coef_y
elif(plane == "s"):
coef = self.coef_tau
H_FIR = 0
for k in range(len(coef)):
H_FIR += coef[k]*np.exp(-1j*2*np.pi*(k)*tune)
latency = np.exp(-1j*2*np.pi*tune*self.turn_delay[index_plane])
for k in range(len(self.coef)):
H_FIR += self.coef[k]*np.exp(-1j*2*np.pi*(k)*tune)
latency = np.exp(-1j*2*np.pi*tune*self.turn_delay)
H_tot = H_FIR * latency
gain = np.abs(H_tot)
phase = np.angle(H_tot, deg = True)
fig, [ax1, ax2] = plt.subplots(1,2)
fig, [ax1, ax2] = plt.subplots(2,1)
ax1.plot(tune, gain)
ax1.set_title("Gain")
ax1.set_xlabel("Tune")
ax1.set_ylabel("Gain")
ax2.plot(tune, phase)
ax2.set_title("Phase in degree")
ax2.set_xlabel("Tune")
ax2.set_ylabel("Degree")
ax2.set_ylabel("Phase in degree")
return fig
def track(self, beam_or_bunch):
"""
......@@ -251,12 +251,8 @@ class FIRDamper(Element) :
"""
n_bunch = len(beam)
self.x_pos = np.zeros((self.tap_number[0], n_bunch))
self.y_pos = np.zeros((self.tap_number[1], n_bunch))
self.tau_pos = np.zeros((self.tap_number[2], n_bunch))
self.kick_x = np.zeros((self.turn_delay[0]+1, n_bunch))
self.kick_y = np.zeros((self.turn_delay[1]+1, n_bunch))
self.kick_tau = np.zeros((self.turn_delay[2]+1, n_bunch))
self.pos = np.zeros((self.tap_number, n_bunch))
self.kick = np.zeros((self.turn_delay+1, n_bunch))
self.beam_no_mpi = True
def track_sb(self, bunch, bunch_number=0):
......@@ -268,50 +264,26 @@ class FIRDamper(Element) :
bunch : Bunch
Bunch to track.
bunch_number : int, optional
Number of bunch in beam.not_empty. The default is 0.
Number of bunch in beam.not_empty.
The default is 0.
"""
for plane in self.plane:
if plane == "x":
pos = self.x_pos
kick_record = self.kick_x
coef = self.coef_x
idx = 0
mean = 0
action = "xp"
elif plane == "y":
pos = self.y_pos
kick_record = self.kick_y
coef = self.coef_y
idx = 1
mean = 2
action = "yp"
elif plane == "s":
pos = self.tau_pos
kick_record = self.kick_tau
coef = self.coef_tau
idx = 2
mean = 4
action = "delta"
else:
raise ValueError("plane can only be x, y or s.")
self.pos[0, bunch_number] = bunch.mean[self.mean_idx]
if self.bpm_error is not None:
self.pos[0, bunch_number] += np.random.normal(0, self.bpm_error)
pos[0, bunch_number] = bunch.mean[mean]
if self.bpm_error[idx] != 0:
pos[0, bunch_number] += np.random.normal(0, self.bpm_error[idx])
kick = 0
for k in range(self.tap_number[idx]):
kick += coef[k]*pos[k, bunch_number]
if self.max_kick[idx] != 0:
if kick > self.max_kick[idx]:
kick = self.max_kick[idx]
elif kick < -1*self.max_kick[idx]:
kick = -1*self.max_kick[idx]
kick_record[-1, bunch_number] = kick
bunch[action] += kick_record[0, bunch_number]
kick = 0
for k in range(self.tap_number):
kick += self.coef[k]*self.pos[k, bunch_number]
pos[:, bunch_number] = np.roll(pos[:, bunch_number], 1)
kick_record[:, bunch_number] = np.roll(kick_record[:, bunch_number], -1)
\ No newline at end of file
if self.max_kick is not None:
if kick > self.max_kick:
kick = self.max_kick
elif kick < -1*self.max_kick:
kick = -1*self.max_kick
self.kick[-1, bunch_number] = kick
bunch[self.action] += self.kick[0, bunch_number]
self.pos[:, bunch_number] = np.roll(self.pos[:, bunch_number], 1)
self.kick[:, bunch_number] = np.roll(self.kick[:, bunch_number], -1)
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment