Skip to content
Snippets Groups Projects
Commit 91a8e1ac authored by Alexis GAMELIN's avatar Alexis GAMELIN
Browse files

Improvement to WakeFunction and Impedance

Improve WakeFunction and Impedance methods to better take into account transverse wakes.
Update read_IW2D function to account for pandas library changes in the last versions.
parent db11aea5
No related branches found
No related tags found
No related merge requests found
......@@ -273,7 +273,9 @@ class WakeFunction(ComplexData):
self._wake_type = value
def from_wakepotential(self, file_name, bunch_length, bunch_charge,
freq_lim, nout=None, trim=False):
freq_lim, wake_type="long", divide_by=None,
nout=None, trim=False, axis0='dist',
axis0_scale=1e-3, axis1_scale=1e-12):
"""
Compute a wake function from a wake potential file and load it to the
WakeFunction object.
......@@ -288,6 +290,11 @@ class WakeFunction(ComplexData):
Bunch charge in [C].
freq_lim : float
The maximum frequency for calculating the impedance [Hz].
wake_type : str, optional
Type of the wake: "long", "xdip", "xquad", ...
divide_by : float, optional
Divide the wake potential by a value. Mainly used to normalize
transverse wake function by displacement.
nout : int, optional
Length of the transformed axis of the output. If None, it is taken
to be 2*(n-1) where n is the length of the input. If nout > n, the
......@@ -298,15 +305,27 @@ class WakeFunction(ComplexData):
to zero where time<0.
If False, the original result is preserved.
If a float is given, the pseudo wake function is trimmed from
time <= trim to 0.
time <= trim to 0.
axis0 : {'dist', 'time'}, optional
Viariable of the data file's first column. Use 'dist' for spacial
distance. Otherwise, 'time' for temporal distance.
axis0_scale : float, optional
Scale of the first column with respect to meter if axis0 = 'dist',
or to second if axis0 = 'time'.
axis1_scale : float, optional
Scale of the wake potential (in second column) with respect to V/C.
"""
imp = Impedance()
imp.from_wakepotential(file_name=file_name, bunch_length=bunch_length,
bunch_charge=bunch_charge, freq_lim=freq_lim)
bunch_charge=bunch_charge, freq_lim=freq_lim,
impedance_type=wake_type, divide_by=divide_by,
axis0=axis0, axis0_scale=axis0_scale,
axis1_scale=axis1_scale)
wf = imp.to_wakefunction(nout=nout, trim=trim)
self.__init__(variable=wf.data.index, function=wf.data["real"])
self.__init__(variable=wf.data.index, function=wf.data["real"],
wake_type=wake_type)
class Impedance(ComplexData):
"""
......@@ -505,8 +524,8 @@ class Impedance(ComplexData):
return kloss
def from_wakepotential(self, file_name, bunch_length, bunch_charge,
freq_lim, axis0='dist', axis0_scale=1e-3,
axis1_scale=1e-12):
freq_lim, impedance_type="long", divide_by=None,
axis0='dist', axis0_scale=1e-3, axis1_scale=1e-12):
"""
Compute impedance from wake potential data and load it to the Impedance
object.
......@@ -515,12 +534,17 @@ class Impedance(ComplexData):
----------
file_name : str
Text file that contains wake potential data.
freq_lim : float
The maximum frequency for calculating the impedance [Hz].
bunch_length : float
Electron bunch lenth [m].
bunch_charge : float
Total bunch charge [C].
freq_lim : float
The maximum frequency for calculating the impedance [Hz].
impedance_type : str, optional
Type of the impedance: "long", "xdip", "xquad", ...
divide_by : float, optional
Divide the impedance by a value. Mainly used to normalize transverse
impedance by displacement.
axis0 : {'dist', 'time'}, optional
Viariable of the data file's first column. Use 'dist' for spacial
distance. Otherwise, 'time' for temporal distance.
......@@ -541,6 +565,8 @@ class Impedance(ComplexData):
raise TypeError('Type of axis 0 not recognized.')
wp = wp0 / axis1_scale
if divide_by is not None:
wp = wp / divide_by
# FT of wake potential
sampling = tau[1] - tau[0]
......@@ -558,10 +584,15 @@ class Impedance(ComplexData):
dft_rho_trun = np.exp(-0.5*(sigma*2*np.pi*freq_trun)**2 + \
1j*mu*2*np.pi*freq_trun)*bunch_charge
imp = dft_wake_trun/dft_rho_trun*-1*bunch_charge
super().__init__(variable=freq_trun, function=imp)
self.data.index.name = "frequency [Hz]"
if impedance_type == "long":
imp = dft_wake_trun/dft_rho_trun*-1*bunch_charge
elif (impedance_type == "xdip") or (impedance_type == "ydip"):
imp = dft_wake_trun/dft_rho_trun*-1j*bunch_charge
else:
raise NotImplementedError(impedance_type + " is not correct.")
self.__init__(variable=freq_trun, function=imp,
impedance_type=impedance_type)
def to_wakefunction(self, nout=None, trim=False):
"""
......@@ -608,7 +639,8 @@ class Impedance(ComplexData):
i_neg = np.where(time<trim)[0]
Wlong[i_neg] = 0
wf = WakeFunction(variable=time, function=Wlong)
wf = WakeFunction(variable=time, function=Wlong,
wake_type=self.impedance_type)
return wf
class WakeField:
......
......@@ -60,7 +60,7 @@ def read_IW2D(file, file_type='Zlong'):
Data from file.
"""
if file_type[0] == "Z":
df = pd.read_csv(file, sep = ' ', header = None,
df = pd.read_csv(file, delim_whitespace=True, header = None,
names = ["Frequency","Real","Imaginary"], skiprows=1)
df.set_index("Frequency", inplace = True)
df = df[df["Real"].notna()]
......@@ -69,7 +69,7 @@ def read_IW2D(file, file_type='Zlong'):
function = df["Real"] + 1j*df["Imaginary"],
impedance_type=file_type[1:])
elif file_type[0] == "W":
df = pd.read_csv(file, sep = ' ', header = None,
df = pd.read_csv(file, delim_whitespace=True, header = None,
names = ["Distance","Wake"], skiprows=1)
df["Time"] = df["Distance"] / c
df.set_index("Time", inplace = True)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment