Skip to content
Snippets Groups Projects
Commit 73ca5144 authored by Watanyu Foosang's avatar Watanyu Foosang
Browse files

Add option to monitor and plot FFT data

parent 0bce794f
No related branches found
No related tags found
No related merge requests found
...@@ -17,6 +17,7 @@ from mbtrack2.tracking.particles import Bunch, Beam ...@@ -17,6 +17,7 @@ from mbtrack2.tracking.particles import Bunch, Beam
from mbtrack2.tracking.rf import CavityResonator from mbtrack2.tracking.rf import CavityResonator
from scipy.interpolate import interp1d from scipy.interpolate import interp1d
from abc import ABCMeta from abc import ABCMeta
from scipy.fft import rfft, rfftfreq
from mpi4py import MPI from mpi4py import MPI
class Monitor(Element, metaclass=ABCMeta): class Monitor(Element, metaclass=ABCMeta):
...@@ -812,7 +813,8 @@ class WakePotentialMonitor(Monitor): ...@@ -812,7 +813,8 @@ class WakePotentialMonitor(Monitor):
class TuneMonitor(Monitor): class TuneMonitor(Monitor):
""" """
Monitor tunes in horizontal, vertical, and longitudinal plane. Monitor tunes and the Fourier transform (using FFT algorithm) of the
osciallation in horizontal, vertical, and longitudinal plane.
Parameters Parameters
---------- ----------
...@@ -822,8 +824,14 @@ class TuneMonitor(Monitor): ...@@ -822,8 +824,14 @@ class TuneMonitor(Monitor):
mp_number : int or float mp_number : int or float
Total number of macro-particles in the bunch. Total number of macro-particles in the bunch.
sample_size : int or float sample_size : int or float
Number of macro-particles to be used for tune computation. This number Number of macro-particles to be used for tune and FFT computation.
needs not to exceed mp_number. This number cannot exceed mp_number.
save_tune : bool, optional
If True, tune data is saved.
save_fft : bool, optional
If True, FFT data is saved.
n_fft : int or float, optional
The number of points used for FFT computation.
file_name : string, optional file_name : string, optional
Name of the HDF5 where the data will be stored. Must be specified Name of the HDF5 where the data will be stored. Must be specified
the first time a subclass of Monitor is instancied and must be None the first time a subclass of Monitor is instancied and must be None
...@@ -846,19 +854,22 @@ class TuneMonitor(Monitor): ...@@ -846,19 +854,22 @@ class TuneMonitor(Monitor):
Methods Methods
------- -------
track(bunch): track(bunch):
Save tune data. Save tune and/or FFT data.
""" """
def __init__(self, ring, bunch_number, mp_number, sample_size, file_name=None, def __init__(self, ring, bunch_number, mp_number, sample_size, save_tune=True,
save_every=10, buffer_size=5, total_size=10, mpi_mode=True): save_fft=False, n_fft=10000, file_name=None, save_every=10,
buffer_size=5, total_size=10, mpi_mode=True):
self.ring = ring self.ring = ring
self.bunch_number = bunch_number self.bunch_number = bunch_number
group_name = "TuneData_" + str(self.bunch_number) group_name = "TuneData_" + str(self.bunch_number)
dict_buffer = {"tune":(3, buffer_size), "tune_spread":(3, buffer_size,)} dict_buffer = {"tune":(3, buffer_size), "tune_spread":(3, buffer_size,),
dict_file = {"tune":(3, total_size), "tune_spread":(3, total_size,)} "fft":(3, n_fft//2+1, buffer_size)}
dict_file = {"tune":(3, total_size), "tune_spread":(3, total_size,),
"fft":(3, n_fft//2+1, total_size)}
self.monitor_init(group_name, save_every, buffer_size, total_size, self.monitor_init(group_name, save_every, buffer_size, total_size,
dict_buffer, dict_file, file_name, mpi_mode) dict_buffer, dict_file, file_name, mpi_mode)
...@@ -874,11 +885,17 @@ class TuneMonitor(Monitor): ...@@ -874,11 +885,17 @@ class TuneMonitor(Monitor):
index = np.arange(0, int(mp_number)) index = np.arange(0, int(mp_number))
self.index_sample = sorted(random.sample(list(index), self.sample_size)) self.index_sample = sorted(random.sample(list(index), self.sample_size))
self.save_every = save_every
self.save_count = 0 self.save_count = 0
self.buffer_count = 1 self.buffer_count = 1
self.save_tune = save_tune
self.save_fft = save_fft
self.save_every = save_every
if self.save_fft is True :
self.n_fft = n_fft
self.fourier_save = np.zeros((3, self.n_fft//2+1, buffer_size))
def track(self, object_to_save): def track(self, object_to_save):
""" """
Save tune data. Save tune data.
...@@ -909,10 +926,9 @@ class TuneMonitor(Monitor): ...@@ -909,10 +926,9 @@ class TuneMonitor(Monitor):
self.save_count += 1 self.save_count += 1
if self.track_count > 0: if self.track_count > 0 and self.track_count % self.save_every == 0:
if self.track_count % self.save_every == 0: self.to_buffer(bunch)
self.to_buffer(bunch) self.save_count = 0
self.save_count = 0
self.track_count += 1 self.track_count += 1
...@@ -921,10 +937,19 @@ class TuneMonitor(Monitor): ...@@ -921,10 +937,19 @@ class TuneMonitor(Monitor):
A method to hold saved data before writing it to the output file. A method to hold saved data before writing it to the output file.
""" """
mean, spread = self.get_tune(bunch)
self.time[self.buffer_count] = self.track_count self.time[self.buffer_count] = self.track_count
self.tune[:, self.buffer_count] = mean
self.tune_spread[:, self.buffer_count] = spread if self.save_tune is True:
mean, spread = self.get_tune(bunch)
self.tune[:, self.buffer_count] = mean
self.tune_spread[:, self.buffer_count] = spread
if self.save_fft is True:
fx, fy, ftau = self.get_fft()
self.fourier_save[0,:,self.buffer_count] = fx
self.fourier_save[1,:,self.buffer_count] = fy
self.fourier_save[2,:,self.buffer_count] = ftau
self.buffer_count += 1 self.buffer_count += 1
...@@ -940,12 +965,18 @@ class TuneMonitor(Monitor): ...@@ -940,12 +965,18 @@ class TuneMonitor(Monitor):
self.file[self.group_name]["time"][self.write_count*self.buffer_size:( self.file[self.group_name]["time"][self.write_count*self.buffer_size:(
self.write_count+1)*self.buffer_size] = self.time self.write_count+1)*self.buffer_size] = self.time
self.file[self.group_name]["tune"][:, if self.save_tune is True:
self.write_count * self.buffer_size:(self.write_count+1) * self.file[self.group_name]["tune"][:,
self.buffer_size] = self.tune self.write_count * self.buffer_size:(self.write_count+1) *
self.file[self.group_name]["tune_spread"][:, self.buffer_size] = self.tune
self.write_count * self.buffer_size:(self.write_count+1) * self.file[self.group_name]["tune_spread"][:,
self.buffer_size] = self.tune_spread self.write_count * self.buffer_size:(self.write_count+1) *
self.buffer_size] = self.tune_spread
if self.save_fft is True:
self.file[self.group_name]["fft"][:,:,
self.write_count * self.buffer_size:(self.write_count+1) *
self.buffer_size] = self.fourier_save
self.file.flush() self.file.flush()
self.write_count += 1 self.write_count += 1
...@@ -989,6 +1020,27 @@ class TuneMonitor(Monitor): ...@@ -989,6 +1020,27 @@ class TuneMonitor(Monitor):
return (mean, spread) return (mean, spread)
def get_fft(self):
"""
Compute the Fourier transform (using FFT algorithm) of the
osciallation in horizontal, vertical, and longitudinal plane.
Returns
-------
fourier_x_avg, fourier_y_avg, fourier_tau_avg : ndarray
The average of the transformed input in each plane.
"""
fourier_x = rfft(self.x, n=self.n_fft)
fourier_y = rfft(self.y, n=self.n_fft)
fourier_tau = rfft(self.tau, n=self.n_fft)
fourier_x_avg = np.mean(abs(fourier_x),axis=0)
fourier_y_avg = np.mean(abs(fourier_y),axis=0)
fourier_tau_avg = np.mean(abs(fourier_tau),axis=0)
return (fourier_x_avg, fourier_y_avg, fourier_tau_avg)
class CavityMonitor(Monitor): class CavityMonitor(Monitor):
""" """
Monitor a CavityResonator object and save attributes (mean, std, emit and current). Monitor a CavityResonator object and save attributes (mean, std, emit and current).
...@@ -1051,5 +1103,4 @@ class CavityMonitor(Monitor): ...@@ -1051,5 +1103,4 @@ class CavityMonitor(Monitor):
self.to_buffer(cavity) self.to_buffer(cavity)
else: else:
raise TypeError("cavity should be a CavityResonator object.") raise TypeError("cavity should be a CavityResonator object.")
self.track_count += 1 self.track_count += 1
\ No newline at end of file
...@@ -13,6 +13,7 @@ import matplotlib as mpl ...@@ -13,6 +13,7 @@ import matplotlib as mpl
import seaborn as sns import seaborn as sns
import h5py as hp import h5py as hp
import random import random
from scipy.fft import rfftfreq
def plot_beamdata(filename, dataset, dimension=None, stat_var=None, x_var="time"): def plot_beamdata(filename, dataset, dimension=None, stat_var=None, x_var="time"):
""" """
...@@ -492,7 +493,9 @@ def plot_wakedata(filename, bunch_number, wake_type="Wlong", start=0, ...@@ -492,7 +493,9 @@ def plot_wakedata(filename, bunch_number, wake_type="Wlong", start=0,
elif streak_plot is True: elif streak_plot is True:
return fig2 return fig2
def plot_tunedata(filename, bunch_number): def plot_tunedata(filename, bunch_number, ring=None, plot_tune=True, plot_fft=False,
dimension='x', min_tune=0, max_tune=0.5, min_turn=None,
max_turn=None, streak_plot=True, profile_plot=False):
""" """
Plot data recorded by TuneMonitor. Plot data recorded by TuneMonitor.
...@@ -503,6 +506,24 @@ def plot_tunedata(filename, bunch_number): ...@@ -503,6 +506,24 @@ def plot_tunedata(filename, bunch_number):
bunch_number : int bunch_number : int
Bunch to plot. This has to be identical to 'bunch_number' parameter in Bunch to plot. This has to be identical to 'bunch_number' parameter in
'BunchMonitor' object. 'BunchMonitor' object.
ring : Synchrotron object, optional
The ring configuration that is used in TuneMonitor. If None, the default
value of the revolution period and the revolution frequency are used,
which are 1.183 us and 0.845 MHz, respectively.
plot_tune : bool, optional
If True, tune data is plotted.
plot_fft : bool, optional
If True, FFT data is plotted.
dimension : {'x', 'y', 's'}
Option to plot FFT data in horizontal, vertical, or longitudinal plane.
min_tune, max_tune : int or float, optional
The minimum and the maximum tune values to plot FFT data.
min_turn, max_turn : int or float, optional
The minimum and the maximum number of turns to plot FFT data.
streak_plot : bool, optional
If True, the FFT data is plotted as a streak plot.
bunch_profile : bool, optional.
If True, the FFT data is plotted as line profiles.
Return Return
------ ------
...@@ -515,20 +536,93 @@ def plot_tunedata(filename, bunch_number): ...@@ -515,20 +536,93 @@ def plot_tunedata(filename, bunch_number):
group = "TuneData_{0}".format(bunch_number) # Data group of the HDF5 file group = "TuneData_{0}".format(bunch_number) # Data group of the HDF5 file
time = file[group]["time"] time = file[group]["time"]
tune = file[group]["tune"]
tune_spread = file[group]["tune_spread"]
fig1, ax1 = plt.subplots()
ax1.errorbar(x=time[1:], y=tune[0,1:], yerr=tune_spread[0,1:])
ax1.errorbar(x=time[1:], y=tune[1,1:], yerr=tune_spread[1,1:])
ax1.set_xlabel("Turn number")
ax1.set_ylabel("Transverse tunes")
plt.legend(["x","y"])
fig2, ax2 = plt.subplots() if plot_tune is True:
ax2.errorbar(x=time[1:], y=tune[2,1:], yerr=tune_spread[2,1:]) tune = file[group]["tune"]
ax2.set_xlabel("Turn number") tune_spread = file[group]["tune_spread"]
ax2.set_ylabel("Synchrotron tune")
fig1, ax1 = plt.subplots()
ax1.errorbar(x=time[1:], y=tune[0,1:], yerr=tune_spread[0,1:])
ax1.errorbar(x=time[1:], y=tune[1,1:], yerr=tune_spread[1,1:])
ax1.set_xlabel("Turn number")
ax1.set_ylabel("Transverse tunes")
plt.legend(["x","y"])
fig2, ax2 = plt.subplots()
ax2.errorbar(x=time[1:], y=tune[2,1:], yerr=tune_spread[2,1:])
ax2.set_xlabel("Turn number")
ax2.set_ylabel("Synchrotron tune")
if plot_fft is True:
if ring is None:
T0 = 1.183e-06
f0 = 0.845e6
else:
T0 = ring.T0
f0 = ring.f0
n_freq = file[group]['fft'].shape[1]
freq = rfftfreq((n_freq-1)*2, T0)
tune_fft = freq / f0
dimension_dict = {'x':0, 'y':1, 's':2}
axis = dimension_dict[dimension]
fourier_save = file[group]['fft'][axis]
if max_turn is None:
max_turn = time[-1]
if min_turn is None:
min_turn = time[1]
min_tune_iloc = np.where(tune_fft >= min_tune)[0][0]
max_tune_iloc = np.where(tune_fft <= max_tune)[0][-1]
save_every = int(time[1] - time[0])
min_turn_iloc = min_turn // save_every
max_turn_iloc = max_turn // save_every
if streak_plot is True:
fig3, ax3 = plt.subplots()
cmap = plt.get_cmap('Blues')
c = ax3.imshow(np.transpose(np.log(
fourier_save[min_tune_iloc:max_tune_iloc+1,
min_turn_iloc:max_turn_iloc+1])),
cmap=cmap, origin='lower' , aspect='auto',
extent=[min_tune, max_tune, min_turn, max_turn])
ax3.set_xlabel('$Q_{}$'.format(dimension))
ax3.set_ylabel("Turns")
cbar = fig3.colorbar(c, ax=ax3)
cbar.set_label("log FFT amplitude")
if profile_plot is True:
fig4, ax4 = plt.subplots()
ax4.plot(tune_fft[min_tune_iloc:max_tune_iloc+1],
fourier_save[min_tune_iloc:max_tune_iloc+1,
min_turn_iloc:max_turn_iloc+1])
ax4.set_xlabel('$Q_{}$'.format(dimension))
ax4.set_ylabel("FFT amplitude")
ax4.legend(time[min_turn_iloc:max_turn_iloc+1])
file.close() file.close()
return (fig1, fig2)
\ No newline at end of file if plot_tune is True and plot_fft is True:
if streak_plot is True and profile_plot is True:
return fig1, fig2, fig3, fig4
elif streak_plot is True:
return fig1, fig2, fig3
elif profile_plot is True:
return fig1, fig2, fig4
elif plot_tune is True:
return fig1, fig2
elif plot_fft is True:
if streak_plot is True and profile_plot is True:
return fig3, fig4
elif streak_plot is True:
return fig3
elif profile_plot is True:
return fig4
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment