Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
M
mbtrack2
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
PA
Collective Effects
mbtrack2
Commits
73ca5144
Commit
73ca5144
authored
3 years ago
by
Watanyu Foosang
Browse files
Options
Downloads
Patches
Plain Diff
Add option to monitor and plot FFT data
parent
0bce794f
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
tracking/monitors/monitors.py
+77
-26
77 additions, 26 deletions
tracking/monitors/monitors.py
tracking/monitors/plotting.py
+109
-15
109 additions, 15 deletions
tracking/monitors/plotting.py
with
186 additions
and
41 deletions
tracking/monitors/monitors.py
+
77
−
26
View file @
73ca5144
...
@@ -17,6 +17,7 @@ from mbtrack2.tracking.particles import Bunch, Beam
...
@@ -17,6 +17,7 @@ from mbtrack2.tracking.particles import Bunch, Beam
from
mbtrack2.tracking.rf
import
CavityResonator
from
mbtrack2.tracking.rf
import
CavityResonator
from
scipy.interpolate
import
interp1d
from
scipy.interpolate
import
interp1d
from
abc
import
ABCMeta
from
abc
import
ABCMeta
from
scipy.fft
import
rfft
,
rfftfreq
from
mpi4py
import
MPI
from
mpi4py
import
MPI
class
Monitor
(
Element
,
metaclass
=
ABCMeta
):
class
Monitor
(
Element
,
metaclass
=
ABCMeta
):
...
@@ -812,7 +813,8 @@ class WakePotentialMonitor(Monitor):
...
@@ -812,7 +813,8 @@ class WakePotentialMonitor(Monitor):
class TuneMonitor(Monitor):
class TuneMonitor(Monitor):
"""
"""
Monitor tunes in horizontal, vertical, and longitudinal plane.
Monitor tunes and the Fourier transform (using FFT algorithm) of the
osciallation in horizontal, vertical, and longitudinal plane.
Parameters
Parameters
----------
----------
...
@@ -822,8 +824,14 @@ class TuneMonitor(Monitor):
...
@@ -822,8 +824,14 @@ class TuneMonitor(Monitor):
mp_number : int or float
mp_number : int or float
Total number of macro-particles in the bunch.
Total number of macro-particles in the bunch.
sample_size : int or float
sample_size : int or float
Number of macro-particles to be used for tune computation. This number
Number of macro-particles to be used for tune and FFT computation.
needs not to exceed mp_number.
This number cannot exceed mp_number.
save_tune : bool, optional
If True, tune data is saved.
save_fft : bool, optional
If True, FFT data is saved.
n_fft : int or float, optional
The number of points used for FFT computation.
file_name : string, optional
file_name : string, optional
Name of the HDF5 where the data will be stored. Must be specified
Name of the HDF5 where the data will be stored. Must be specified
the first time a subclass of Monitor is instancied and must be None
the first time a subclass of Monitor is instancied and must be None
...
@@ -846,19 +854,22 @@ class TuneMonitor(Monitor):
...
@@ -846,19 +854,22 @@ class TuneMonitor(Monitor):
Methods
Methods
-------
-------
track(bunch):
track(bunch):
Save tune data.
Save tune
and/or FFT
data.
"""
"""
def __init__(self, ring, bunch_number, mp_number, sample_size, file_name=None,
def __init__(self, ring, bunch_number, mp_number, sample_size, save_tune=True,
save_every=10, buffer_size=5, total_size=10, mpi_mode=True):
save_fft=False, n_fft=10000, file_name=None, save_every=10,
buffer_size=5, total_size=10, mpi_mode=True):
self.ring = ring
self.ring = ring
self.bunch_number = bunch_number
self.bunch_number = bunch_number
group_name =
"
TuneData_
"
+ str(self.bunch_number)
group_name =
"
TuneData_
"
+ str(self.bunch_number)
dict_buffer = {
"
tune
"
:(3, buffer_size),
"
tune_spread
"
:(3, buffer_size,)}
dict_buffer = {
"
tune
"
:(3, buffer_size),
"
tune_spread
"
:(3, buffer_size,),
dict_file = {
"
tune
"
:(3, total_size),
"
tune_spread
"
:(3, total_size,)}
"
fft
"
:(3, n_fft//2+1, buffer_size)}
dict_file = {
"
tune
"
:(3, total_size),
"
tune_spread
"
:(3, total_size,),
"
fft
"
:(3, n_fft//2+1, total_size)}
self.monitor_init(group_name, save_every, buffer_size, total_size,
self.monitor_init(group_name, save_every, buffer_size, total_size,
dict_buffer, dict_file, file_name, mpi_mode)
dict_buffer, dict_file, file_name, mpi_mode)
...
@@ -874,11 +885,17 @@ class TuneMonitor(Monitor):
...
@@ -874,11 +885,17 @@ class TuneMonitor(Monitor):
index = np.arange(0, int(mp_number))
index = np.arange(0, int(mp_number))
self.index_sample = sorted(random.sample(list(index), self.sample_size))
self.index_sample = sorted(random.sample(list(index), self.sample_size))
self.save_every = save_every
self.save_count = 0
self.save_count = 0
self.buffer_count = 1
self.buffer_count = 1
self.save_tune = save_tune
self.save_fft = save_fft
self.save_every = save_every
if self.save_fft is True :
self.n_fft = n_fft
self.fourier_save = np.zeros((3, self.n_fft//2+1, buffer_size))
def track(self, object_to_save):
def track(self, object_to_save):
"""
"""
Save tune data.
Save tune data.
...
@@ -909,10 +926,9 @@ class TuneMonitor(Monitor):
...
@@ -909,10 +926,9 @@ class TuneMonitor(Monitor):
self.save_count += 1
self.save_count += 1
if self.track_count > 0:
if self.track_count > 0 and self.track_count % self.save_every == 0:
if self.track_count % self.save_every == 0:
self.to_buffer(bunch)
self.to_buffer(bunch)
self.save_count = 0
self.save_count = 0
self.track_count += 1
self.track_count += 1
...
@@ -921,10 +937,19 @@ class TuneMonitor(Monitor):
...
@@ -921,10 +937,19 @@ class TuneMonitor(Monitor):
A method to hold saved data before writing it to the output file.
A method to hold saved data before writing it to the output file.
"""
"""
mean, spread = self.get_tune(bunch)
self.time[self.buffer_count] = self.track_count
self.time[self.buffer_count] = self.track_count
self.tune[:, self.buffer_count] = mean
self.tune_spread[:, self.buffer_count] = spread
if self.save_tune is True:
mean, spread = self.get_tune(bunch)
self.tune[:, self.buffer_count] = mean
self.tune_spread[:, self.buffer_count] = spread
if self.save_fft is True:
fx, fy, ftau = self.get_fft()
self.fourier_save[0,:,self.buffer_count] = fx
self.fourier_save[1,:,self.buffer_count] = fy
self.fourier_save[2,:,self.buffer_count] = ftau
self.buffer_count += 1
self.buffer_count += 1
...
@@ -940,12 +965,18 @@ class TuneMonitor(Monitor):
...
@@ -940,12 +965,18 @@ class TuneMonitor(Monitor):
self.file[self.group_name][
"
time
"
][self.write_count*self.buffer_size:(
self.file[self.group_name][
"
time
"
][self.write_count*self.buffer_size:(
self.write_count+1)*self.buffer_size] = self.time
self.write_count+1)*self.buffer_size] = self.time
self.file[self.group_name][
"
tune
"
][:,
if self.save_tune is True:
self.write_count * self.buffer_size:(self.write_count+1) *
self.file[self.group_name][
"
tune
"
][:,
self.buffer_size] = self.tune
self.write_count * self.buffer_size:(self.write_count+1) *
self.file[self.group_name][
"
tune_spread
"
][:,
self.buffer_size] = self.tune
self.write_count * self.buffer_size:(self.write_count+1) *
self.file[self.group_name][
"
tune_spread
"
][:,
self.buffer_size] = self.tune_spread
self.write_count * self.buffer_size:(self.write_count+1) *
self.buffer_size] = self.tune_spread
if self.save_fft is True:
self.file[self.group_name][
"
fft
"
][:,:,
self.write_count * self.buffer_size:(self.write_count+1) *
self.buffer_size] = self.fourier_save
self.file.flush()
self.file.flush()
self.write_count += 1
self.write_count += 1
...
@@ -989,6 +1020,27 @@ class TuneMonitor(Monitor):
...
@@ -989,6 +1020,27 @@ class TuneMonitor(Monitor):
return (mean, spread)
return (mean, spread)
def get_fft(self):
"""
Compute the Fourier transform (using FFT algorithm) of the
osciallation in horizontal, vertical, and longitudinal plane.
Returns
-------
fourier_x_avg, fourier_y_avg, fourier_tau_avg : ndarray
The average of the transformed input in each plane.
"""
fourier_x = rfft(self.x, n=self.n_fft)
fourier_y = rfft(self.y, n=self.n_fft)
fourier_tau = rfft(self.tau, n=self.n_fft)
fourier_x_avg = np.mean(abs(fourier_x),axis=0)
fourier_y_avg = np.mean(abs(fourier_y),axis=0)
fourier_tau_avg = np.mean(abs(fourier_tau),axis=0)
return (fourier_x_avg, fourier_y_avg, fourier_tau_avg)
class CavityMonitor(Monitor):
class CavityMonitor(Monitor):
"""
"""
Monitor a CavityResonator object and save attributes (mean, std, emit and current).
Monitor a CavityResonator object and save attributes (mean, std, emit and current).
...
@@ -1051,5 +1103,4 @@ class CavityMonitor(Monitor):
...
@@ -1051,5 +1103,4 @@ class CavityMonitor(Monitor):
self.to_buffer(cavity)
self.to_buffer(cavity)
else:
else:
raise TypeError(
"
cavity
should
be
a
CavityResonator
object
.
"
)
raise TypeError(
"
cavity
should
be
a
CavityResonator
object
.
"
)
self.track_count += 1
self.track_count += 1
\ No newline at end of file
This diff is collapsed.
Click to expand it.
tracking/monitors/plotting.py
+
109
−
15
View file @
73ca5144
...
@@ -13,6 +13,7 @@ import matplotlib as mpl
...
@@ -13,6 +13,7 @@ import matplotlib as mpl
import
seaborn
as
sns
import
seaborn
as
sns
import
h5py
as
hp
import
h5py
as
hp
import
random
import
random
from
scipy.fft
import
rfftfreq
def
plot_beamdata
(
filename
,
dataset
,
dimension
=
None
,
stat_var
=
None
,
x_var
=
"
time
"
):
def
plot_beamdata
(
filename
,
dataset
,
dimension
=
None
,
stat_var
=
None
,
x_var
=
"
time
"
):
"""
"""
...
@@ -492,7 +493,9 @@ def plot_wakedata(filename, bunch_number, wake_type="Wlong", start=0,
...
@@ -492,7 +493,9 @@ def plot_wakedata(filename, bunch_number, wake_type="Wlong", start=0,
elif
streak_plot
is
True
:
elif
streak_plot
is
True
:
return
fig2
return
fig2
def
plot_tunedata
(
filename
,
bunch_number
):
def
plot_tunedata
(
filename
,
bunch_number
,
ring
=
None
,
plot_tune
=
True
,
plot_fft
=
False
,
dimension
=
'
x
'
,
min_tune
=
0
,
max_tune
=
0.5
,
min_turn
=
None
,
max_turn
=
None
,
streak_plot
=
True
,
profile_plot
=
False
):
"""
"""
Plot data recorded by TuneMonitor.
Plot data recorded by TuneMonitor.
...
@@ -503,6 +506,24 @@ def plot_tunedata(filename, bunch_number):
...
@@ -503,6 +506,24 @@ def plot_tunedata(filename, bunch_number):
bunch_number : int
bunch_number : int
Bunch to plot. This has to be identical to
'
bunch_number
'
parameter in
Bunch to plot. This has to be identical to
'
bunch_number
'
parameter in
'
BunchMonitor
'
object.
'
BunchMonitor
'
object.
ring : Synchrotron object, optional
The ring configuration that is used in TuneMonitor. If None, the default
value of the revolution period and the revolution frequency are used,
which are 1.183 us and 0.845 MHz, respectively.
plot_tune : bool, optional
If True, tune data is plotted.
plot_fft : bool, optional
If True, FFT data is plotted.
dimension : {
'
x
'
,
'
y
'
,
'
s
'
}
Option to plot FFT data in horizontal, vertical, or longitudinal plane.
min_tune, max_tune : int or float, optional
The minimum and the maximum tune values to plot FFT data.
min_turn, max_turn : int or float, optional
The minimum and the maximum number of turns to plot FFT data.
streak_plot : bool, optional
If True, the FFT data is plotted as a streak plot.
bunch_profile : bool, optional.
If True, the FFT data is plotted as line profiles.
Return
Return
------
------
...
@@ -515,20 +536,93 @@ def plot_tunedata(filename, bunch_number):
...
@@ -515,20 +536,93 @@ def plot_tunedata(filename, bunch_number):
group
=
"
TuneData_{0}
"
.
format
(
bunch_number
)
# Data group of the HDF5 file
group
=
"
TuneData_{0}
"
.
format
(
bunch_number
)
# Data group of the HDF5 file
time
=
file
[
group
][
"
time
"
]
time
=
file
[
group
][
"
time
"
]
tune
=
file
[
group
][
"
tune
"
]
tune_spread
=
file
[
group
][
"
tune_spread
"
]
fig1
,
ax1
=
plt
.
subplots
()
ax1
.
errorbar
(
x
=
time
[
1
:],
y
=
tune
[
0
,
1
:],
yerr
=
tune_spread
[
0
,
1
:])
ax1
.
errorbar
(
x
=
time
[
1
:],
y
=
tune
[
1
,
1
:],
yerr
=
tune_spread
[
1
,
1
:])
ax1
.
set_xlabel
(
"
Turn number
"
)
ax1
.
set_ylabel
(
"
Transverse tunes
"
)
plt
.
legend
([
"
x
"
,
"
y
"
])
fig2
,
ax2
=
plt
.
subplots
()
if
plot_tune
is
True
:
ax2
.
errorbar
(
x
=
time
[
1
:],
y
=
tune
[
2
,
1
:],
yerr
=
tune_spread
[
2
,
1
:])
tune
=
file
[
group
][
"
tune
"
]
ax2
.
set_xlabel
(
"
Turn number
"
)
tune_spread
=
file
[
group
][
"
tune_spread
"
]
ax2
.
set_ylabel
(
"
Synchrotron tune
"
)
fig1
,
ax1
=
plt
.
subplots
()
ax1
.
errorbar
(
x
=
time
[
1
:],
y
=
tune
[
0
,
1
:],
yerr
=
tune_spread
[
0
,
1
:])
ax1
.
errorbar
(
x
=
time
[
1
:],
y
=
tune
[
1
,
1
:],
yerr
=
tune_spread
[
1
,
1
:])
ax1
.
set_xlabel
(
"
Turn number
"
)
ax1
.
set_ylabel
(
"
Transverse tunes
"
)
plt
.
legend
([
"
x
"
,
"
y
"
])
fig2
,
ax2
=
plt
.
subplots
()
ax2
.
errorbar
(
x
=
time
[
1
:],
y
=
tune
[
2
,
1
:],
yerr
=
tune_spread
[
2
,
1
:])
ax2
.
set_xlabel
(
"
Turn number
"
)
ax2
.
set_ylabel
(
"
Synchrotron tune
"
)
if
plot_fft
is
True
:
if
ring
is
None
:
T0
=
1.183e-06
f0
=
0.845e6
else
:
T0
=
ring
.
T0
f0
=
ring
.
f0
n_freq
=
file
[
group
][
'
fft
'
].
shape
[
1
]
freq
=
rfftfreq
((
n_freq
-
1
)
*
2
,
T0
)
tune_fft
=
freq
/
f0
dimension_dict
=
{
'
x
'
:
0
,
'
y
'
:
1
,
'
s
'
:
2
}
axis
=
dimension_dict
[
dimension
]
fourier_save
=
file
[
group
][
'
fft
'
][
axis
]
if
max_turn
is
None
:
max_turn
=
time
[
-
1
]
if
min_turn
is
None
:
min_turn
=
time
[
1
]
min_tune_iloc
=
np
.
where
(
tune_fft
>=
min_tune
)[
0
][
0
]
max_tune_iloc
=
np
.
where
(
tune_fft
<=
max_tune
)[
0
][
-
1
]
save_every
=
int
(
time
[
1
]
-
time
[
0
])
min_turn_iloc
=
min_turn
//
save_every
max_turn_iloc
=
max_turn
//
save_every
if
streak_plot
is
True
:
fig3
,
ax3
=
plt
.
subplots
()
cmap
=
plt
.
get_cmap
(
'
Blues
'
)
c
=
ax3
.
imshow
(
np
.
transpose
(
np
.
log
(
fourier_save
[
min_tune_iloc
:
max_tune_iloc
+
1
,
min_turn_iloc
:
max_turn_iloc
+
1
])),
cmap
=
cmap
,
origin
=
'
lower
'
,
aspect
=
'
auto
'
,
extent
=
[
min_tune
,
max_tune
,
min_turn
,
max_turn
])
ax3
.
set_xlabel
(
'
$Q_{}$
'
.
format
(
dimension
))
ax3
.
set_ylabel
(
"
Turns
"
)
cbar
=
fig3
.
colorbar
(
c
,
ax
=
ax3
)
cbar
.
set_label
(
"
log FFT amplitude
"
)
if
profile_plot
is
True
:
fig4
,
ax4
=
plt
.
subplots
()
ax4
.
plot
(
tune_fft
[
min_tune_iloc
:
max_tune_iloc
+
1
],
fourier_save
[
min_tune_iloc
:
max_tune_iloc
+
1
,
min_turn_iloc
:
max_turn_iloc
+
1
])
ax4
.
set_xlabel
(
'
$Q_{}$
'
.
format
(
dimension
))
ax4
.
set_ylabel
(
"
FFT amplitude
"
)
ax4
.
legend
(
time
[
min_turn_iloc
:
max_turn_iloc
+
1
])
file
.
close
()
file
.
close
()
return
(
fig1
,
fig2
)
\ No newline at end of file
if
plot_tune
is
True
and
plot_fft
is
True
:
if
streak_plot
is
True
and
profile_plot
is
True
:
return
fig1
,
fig2
,
fig3
,
fig4
elif
streak_plot
is
True
:
return
fig1
,
fig2
,
fig3
elif
profile_plot
is
True
:
return
fig1
,
fig2
,
fig4
elif
plot_tune
is
True
:
return
fig1
,
fig2
elif
plot_fft
is
True
:
if
streak_plot
is
True
and
profile_plot
is
True
:
return
fig3
,
fig4
elif
streak_plot
is
True
:
return
fig3
elif
profile_plot
is
True
:
return
fig4
\ No newline at end of file
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment