Skip to content
Snippets Groups Projects
Commit 18e8c9c7 authored by Alexis GAMELIN's avatar Alexis GAMELIN
Browse files

Merge branch 'yokoya_elliptic' into 'develop'

Yokoya elliptic (reopened)

See merge request !3
parents 33987414 7fbabd06
No related branches found
No related tags found
2 merge requests!13v0.7.0,!3Yokoya elliptic (reopened)
......@@ -8,6 +8,7 @@ from pathlib import Path
import numpy as np
import pandas as pd
from scipy.interpolate import interp1d
from scipy.special import gamma, factorial, hyp2f1
from mbtrack2.impedance.wakefield import Impedance
from mbtrack2.utilities.spectrum import spectral_density
......@@ -168,7 +169,6 @@ def tune_shift_from_effective_impedance(Zeff):
def yokoya_elliptic(x_radius, y_radius):
"""
Compute Yokoya factors for an elliptic beam pipe.
Function adapted from N. Mounet IW2D.
Parameters
----------
......@@ -189,38 +189,156 @@ def yokoya_elliptic(x_radius, y_radius):
Yokoya factor for the quadrupolar horizontal impedance.
yokyquad : float
Yokoya factor for the quadrupolar vertical impedance.
References
----------
[1] : M. Migliorati, L. Palumbo, C. Zannini, N. Biancacci, and
V. G. Vaccaro, "Resistive wall impedance in elliptical multilayer vacuum
chambers." Phys. Rev. Accel. Beams 22, 121001 (2019).
[2] : R.L. Gluckstern, J. van Zeijts, and B. Zotter, "Coupling impedance
of beam pipes of general cross section." Phys. Rev. E 47, 656 (1993).
"""
if y_radius < x_radius:
small_semiaxis = y_radius
large_semiaxis = x_radius
else:
small_semiaxis = x_radius
large_semiaxis = y_radius
path_to_file = Path(__file__).parent
file = path_to_file / "data" / "Yokoya_elliptic_from_Elias_USPAS.csv"
# read Yokoya factors interpolation file
# BEWARE: columns are ratio, dipy, dipx, quady, quadx
yokoya_file = pd.read_csv(file)
ratio_col = yokoya_file["x"]
# compute semi-axes ratio (first column of this file)
ratio = (large_semiaxis-small_semiaxis) / (large_semiaxis+small_semiaxis)
# interpolate Yokoya file at the correct ratio
yoklong = 1
if y_radius < x_radius:
yokydip = np.interp(ratio, ratio_col, yokoya_file["dipy"])
yokxdip = np.interp(ratio, ratio_col, yokoya_file["dipx"])
yokyquad = np.interp(ratio, ratio_col, yokoya_file["quady"])
yokxquad = np.interp(ratio, ratio_col, yokoya_file["quadx"])
if (x_radius <= 0) or (y_radius <= 0):
raise ValueError("Both radii must be non-zero positive values.")
elif (x_radius == np.inf) and (y_radius == np.inf):
raise ValueError("Both radii have infinite values.")
elif x_radius == np.inf:
yoklong = 1.0
yokxdip = np.pi**2/24
yokydip = np.pi**2/12
yokxquad = -np.pi**2/24
yokyquad = np.pi**2/24
elif y_radius == np.inf:
yoklong = 1.0
yokxdip = np.pi**2/12
yokydip = np.pi**2/24
yokxquad = np.pi**2/24
yokyquad = -np.pi**2/24
else:
yokxdip = np.interp(ratio, ratio_col, yokoya_file["dipy"])
yokydip = np.interp(ratio, ratio_col, yokoya_file["dipx"])
yokxquad = np.interp(ratio, ratio_col, yokoya_file["quady"])
yokyquad = np.interp(ratio, ratio_col, yokoya_file["quadx"])
if y_radius < x_radius:
small_semiaxis = y_radius
large_semiaxis = x_radius
else:
small_semiaxis = x_radius
large_semiaxis = y_radius
qr = (large_semiaxis - small_semiaxis) / (large_semiaxis + small_semiaxis)
if qr == 0:
yoklong = 1.0
yokxdip = 1.0
yokydip = 1.0
yokxquad = 0.0
yokyquad = 0.0
else:
# Define form factor functions
def function_ff(small_semiaxis, F, mu_b, ip, il):
coeff_fflong = 2*np.sqrt(2)*small_semiaxis/(np.pi*F)
coeff_fftrans = np.sqrt(2)*small_semiaxis**3/(np.pi*F**3)
fflong = ( coeff_fflong*(-1)**ip/np.cosh(2*ip*mu_b)
* (-1)**il/np.cosh(2*il*mu_b) )
ffdx = ( coeff_fftrans*(-1)**ip*(2*ip+1)/np.cosh((2*ip+1)*mu_b)
* (-1)**il*(2*il+1)/np.cosh((2*il+1)*mu_b) )
ffdy = ( coeff_fftrans*(-1)**ip*(2*ip+1)/np.sinh((2*ip+1)*mu_b)
* (-1)**il*(2*il+1)/np.sinh((2*il+1)*mu_b) )
ffquad = ( coeff_fftrans*(-1)**ip*(2*ip)**2/np.cosh(2*ip*mu_b)
* (-1)**il/np.cosh(2*il*mu_b) )
return (fflong, ffdx, ffdy, ffquad)
def function_L(mu_b, ip, il):
common_L = ( np.sqrt(2)*np.pi*np.exp(-(2*abs(ip-il)+1)*mu_b)
* gamma(0.5+abs(ip-il))/(gamma(0.5)*factorial(abs(ip-il)))
* hyp2f1(0.5, abs(ip-il)+0.5, abs(ip-il)+1, np.exp(-4*mu_b)) )
val_m = ( np.sqrt(2)*np.pi*np.exp(-(2*ip+2*il+1)*mu_b)
* gamma(0.5+ip+il)/(gamma(0.5)*factorial(ip+il))
* hyp2f1(0.5, ip+il+0.5, ip+il+1, np.exp(-4*mu_b)) )
val_d = ( np.sqrt(2)*np.pi*np.exp(-(2*ip+2*il+3)*mu_b)
* gamma(1.5+ip+il)/(gamma(0.5)*factorial(ip+il+1))
* hyp2f1(0.5, ip+il+1.5, ip+il+2, np.exp(-4*mu_b)) )
Lm = common_L + val_m
Ldx = common_L + val_d
Ldy = common_L - val_d
return (Lm, Ldx, Ldy)
ip_range = np.arange(51)
il_range = np.arange(51)
ip, il = np.meshgrid(ip_range, il_range, indexing="ij")
coeff_long = np.where( (ip == 0) & (il == 0), 0.25,
np.where((ip == 0) | (il == 0), 0.5, 1.0) )
coeff_quad = np.where(il == 0, 0.5, 1.0)
# Our equations are approximately valid only for qr (ratio) values
# less than or equal to 0.8.
qr_th = 0.8
if qr < qr_th:
F = np.sqrt(large_semiaxis**2 - small_semiaxis**2)
mu_b = np.arccosh(large_semiaxis/F)
ff_values = np.array(function_ff(small_semiaxis, F, mu_b, ip, il))
L_values = np.array(function_L(mu_b, ip, il))
yoklong = np.sum(coeff_long * ff_values[0] * L_values[0])
yokxdip = np.sum(ff_values[1] * L_values[1])
yokydip = np.sum(ff_values[2] * L_values[2])
yokxquad = -np.sum(coeff_quad * ff_values[3] * L_values[0])
yokyquad = -yokxquad
if y_radius > x_radius:
yokxdip, yokydip = yokydip, yokxdip
yokxquad, yokyquad = yokyquad, yokxquad
# Beyond the threshold (qr >= qr_th), they may not be valid,
# but should converge to Yokoya form factors of parallel plates.
# Fortunately, beyond this threshold, they should show asymptotic behavior,
# so we perform linear interpolation.
else:
yoklong_pp = 1.0
yokxdip_pp = np.pi**2/24
yokydip_pp = np.pi**2/12
yokxquad_pp = -np.pi**2/24
yokyquad_pp = np.pi**2/24
small_semiaxis_th = large_semiaxis*(1-qr_th)/(1+qr_th)
F_th = np.sqrt(large_semiaxis**2 - small_semiaxis_th**2)
mu_b_th = np.arccosh(large_semiaxis/F_th)
ff_values_th = np.array(function_ff(small_semiaxis_th, F_th, mu_b_th, ip, il))
L_values_th = np.array(function_L(mu_b_th, ip, il))
yoklong_th = np.sum(coeff_long * ff_values_th[0] * L_values_th[0])
yokxdip_th = np.sum(ff_values_th[1] * L_values_th[1])
yokydip_th = np.sum(ff_values_th[2] * L_values_th[2])
yokxquad_th = -np.sum(coeff_quad * ff_values_th[3] * L_values_th[0])
yokyquad_th = -yokxquad_th
if y_radius > x_radius:
yokxdip_th, yokydip_th = yokydip_th, yokxdip_th
yokxquad_th, yokyquad_th = yokyquad_th, yokxquad_th
yokxdip_pp, yokydip_pp = yokydip_pp, yokxdip_pp
yokxquad_pp, yokyquad_pp = yokyquad_pp, yokxquad_pp
qr_array = np.array([qr_th, 1.0])
yoklong_array = np.array([yoklong_th, yoklong_pp])
yokxdip_array = np.array([yokxdip_th, yokxdip_pp])
yokydip_array = np.array([yokydip_th, yokydip_pp])
yokxquad_array = np.array([yokxquad_th, yokxquad_pp])
yokyquad_array = np.array([yokyquad_th, yokyquad_pp])
yoklong = np.interp(qr, qr_array, yoklong_array)
yokxdip = np.interp(qr, qr_array, yokxdip_array)
yokydip = np.interp(qr, qr_array, yokydip_array)
yokxquad = np.interp(qr, qr_array, yokxquad_array)
yokyquad = np.interp(qr, qr_array, yokyquad_array)
return (yoklong, yokxdip, yokydip, yokxquad, yokyquad)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment