Skip to content
Snippets Groups Projects
Commit 0a166df3 authored by Alexis GAMELIN's avatar Alexis GAMELIN
Browse files

Add methods to compute longitudinal Twiss and invariant

Add Synchrotron.get_longitudinal_twiss method to compute the longitudinal Twiss parameters and the synchrotron tune for single or multi-harmonic RF systems.
Change back synchrotron_tune to provide only the usual the (unperturbed) synchrotron tune from main RF voltage.
The longitudinal invariant Js is now computed in Bunch.cs_invariant and Beam.bunch_cs and save by BeamMontior and BunchMonitor, its value is 0 by default if the longitudinal Twiss parameters are not provided in the Synchrotron class.
parent 4109b3df
No related branches found
No related tags found
No related merge requests found
...@@ -289,10 +289,10 @@ class BunchMonitor(Monitor): ...@@ -289,10 +289,10 @@ class BunchMonitor(Monitor):
group_name = "BunchData_" + str(self.bunch_number) group_name = "BunchData_" + str(self.bunch_number)
dict_buffer = {"mean":(6, buffer_size), "std":(6, buffer_size), dict_buffer = {"mean":(6, buffer_size), "std":(6, buffer_size),
"emit":(3, buffer_size), "current":(buffer_size,), "emit":(3, buffer_size), "current":(buffer_size,),
"cs_invariant":(2, buffer_size)} "cs_invariant":(3, buffer_size)}
dict_file = {"mean":(6, total_size), "std":(6, total_size), dict_file = {"mean":(6, total_size), "std":(6, total_size),
"emit":(3, total_size), "current":(total_size,), "emit":(3, total_size), "current":(total_size,),
"cs_invariant":(2, total_size)} "cs_invariant":(3, total_size)}
self.monitor_init(group_name, save_every, buffer_size, total_size, self.monitor_init(group_name, save_every, buffer_size, total_size,
dict_buffer, dict_file, file_name, mpi_mode) dict_buffer, dict_file, file_name, mpi_mode)
...@@ -442,12 +442,12 @@ class BeamMonitor(Monitor): ...@@ -442,12 +442,12 @@ class BeamMonitor(Monitor):
"std" : (6, h, buffer_size), "std" : (6, h, buffer_size),
"emit" : (3, h, buffer_size), "emit" : (3, h, buffer_size),
"current" : (h, buffer_size), "current" : (h, buffer_size),
"cs_invariant" : (2, h, buffer_size)} "cs_invariant" : (3, h, buffer_size)}
dict_file = {"mean" : (6, h, total_size), dict_file = {"mean" : (6, h, total_size),
"std" : (6, h, total_size), "std" : (6, h, total_size),
"emit" : (3, h, total_size), "emit" : (3, h, total_size),
"current" : (h, total_size), "current" : (h, total_size),
"cs_invariant" : (2, h, total_size)} "cs_invariant" : (3, h, total_size)}
self.monitor_init(group_name, save_every, buffer_size, total_size, self.monitor_init(group_name, save_every, buffer_size, total_size,
dict_buffer, dict_file, file_name, mpi_mode) dict_buffer, dict_file, file_name, mpi_mode)
......
...@@ -26,7 +26,7 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean", ...@@ -26,7 +26,7 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean",
dimension : str dimension : str
The dimension of the dataset to plot: The dimension of the dataset to plot:
for "emit", dimension = {"x","y","s"}, for "emit", dimension = {"x","y","s"},
for "cs_invariant", dimension = {"x","y"}, for "cs_invariant", dimension = {"x","y","s"},
for "mean" and "std", dimension = {"x","xp","y","yp","tau","delta"}. for "mean" and "std", dimension = {"x","xp","y","yp","tau","delta"}.
not used if "current". not used if "current".
The default is "tau". The default is "tau".
...@@ -78,9 +78,9 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean", ...@@ -78,9 +78,9 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean",
y = np.nanstd(data[axis,bunch_index,:],0) y = np.nanstd(data[axis,bunch_index,:],0)
y_label = stat_var + " " + label[axis] y_label = stat_var + " " + label[axis]
elif dataset == "cs_invariant": elif dataset == "cs_invariant":
dimension_dict = {"x":0, "y":1} dimension_dict = {"x":0, "y":1, "s":2}
axis = dimension_dict[dimension] axis = dimension_dict[dimension]
label = ['$J_x$ (m)', '$J_y$ (m)'] label = ['$J_x$ (m)', '$J_y$ (m)', '$J_s$ (s)']
if stat_var == "mean": if stat_var == "mean":
y = np.nanmean(data[axis,bunch_index,:],0) y = np.nanmean(data[axis,bunch_index,:],0)
elif stat_var == "std": elif stat_var == "std":
...@@ -123,9 +123,9 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean", ...@@ -123,9 +123,9 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean",
y = data[axis,:,idx] y = data[axis,:,idx]
y_label = label[axis] y_label = label[axis]
elif dataset == "cs_invariant": elif dataset == "cs_invariant":
dimension_dict = {"x":0, "y":1} dimension_dict = {"x":0, "y":1, "s":2}
axis = dimension_dict[dimension] axis = dimension_dict[dimension]
label = ['$J_x$ (m)', '$J_y$ (m)'] label = ['$J_x$ (m)', '$J_y$ (m)', '$J_s$ (s)']
y = data[axis,:,idx] y = data[axis,:,idx]
y_label = label[axis] y_label = label[axis]
elif dataset == "mean" or dataset == "std": elif dataset == "mean" or dataset == "std":
...@@ -165,7 +165,7 @@ def streak_beamdata(filename, dataset="mean", dimension="tau", cm_lim=None): ...@@ -165,7 +165,7 @@ def streak_beamdata(filename, dataset="mean", dimension="tau", cm_lim=None):
dimension : str dimension : str
The dimension of the dataset to plot: The dimension of the dataset to plot:
for "emit", dimension = {"x","y","s"}, for "emit", dimension = {"x","y","s"},
for "cs_invariant", dimension = {"x","y"}, for "cs_invariant", dimension = {"x","y","s"},
for "mean" and "std", dimension = {"x","xp","y","yp","tau","delta"}. for "mean" and "std", dimension = {"x","xp","y","yp","tau","delta"}.
not used if "current". not used if "current".
The default is "tau". The default is "tau".
...@@ -202,9 +202,9 @@ def streak_beamdata(filename, dataset="mean", dimension="tau", cm_lim=None): ...@@ -202,9 +202,9 @@ def streak_beamdata(filename, dataset="mean", dimension="tau", cm_lim=None):
z_label = label[axis] z_label = label[axis]
title = z_label title = z_label
elif dataset == "cs_invariant": elif dataset == "cs_invariant":
dimension_dict = {"x":0, "y":1} dimension_dict = {"x":0, "y":1, "s":2}
axis = dimension_dict[dimension] axis = dimension_dict[dimension]
label = ['$J_x$ (m)', '$J_y$ (m)'] label = ['$J_x$ (m)', '$J_y$ (m)', '$J_s$ (s)']
z = np.array(data["cs_invariant"][axis,:,:]).T z = np.array(data["cs_invariant"][axis,:,:]).T
z_label = label[axis] z_label = label[axis]
title = z_label title = z_label
...@@ -261,7 +261,7 @@ def plot_bunchdata(filenames, bunch_number, dataset, dimension="x", ...@@ -261,7 +261,7 @@ def plot_bunchdata(filenames, bunch_number, dataset, dimension="x",
The dimension of the dataset to plot. Use "None" for "current", The dimension of the dataset to plot. Use "None" for "current",
otherwise use the following : otherwise use the following :
for "emit", dimension = {"x","y","s"}, for "emit", dimension = {"x","y","s"},
for "cs_invariant", dimension = {"x","y"}, for "cs_invariant", dimension = {"x","y","s"},
for "mean" and "std", dimension = {"x","xp","y","yp","tau","delta"}, for "mean" and "std", dimension = {"x","xp","y","yp","tau","delta"},
for "action", dimension = {"x","y"}. for "action", dimension = {"x","y"}.
legend : list of str, optional legend : list of str, optional
...@@ -320,10 +320,10 @@ def plot_bunchdata(filenames, bunch_number, dataset, dimension="x", ...@@ -320,10 +320,10 @@ def plot_bunchdata(filenames, bunch_number, dataset, dimension="x",
label = label_list[axis_index] label = label_list[axis_index]
elif dataset == "cs_invariant": elif dataset == "cs_invariant":
dimension_dict = {"x":0, "y":1} dimension_dict = {"x":0, "y":1, "s":2}
axis_index = dimension_dict[dimension] axis_index = dimension_dict[dimension]
y_var = file[group][dataset][axis_index] y_var = file[group][dataset][axis_index]
label_list = ['$J_x$ (m)', '$J_y$ (m)'] label_list = ['$J_x$ (m)', '$J_y$ (m)', '$J_s$ (s)']
label = label_list[axis_index] label = label_list[axis_index]
x_axis = file[group]["time"][:] x_axis = file[group]["time"][:]
......
...@@ -255,7 +255,10 @@ class Bunch: ...@@ -255,7 +255,10 @@ class Bunch:
Jy = (self.ring.optics.local_gamma[1] * self['y']**2) + \ Jy = (self.ring.optics.local_gamma[1] * self['y']**2) + \
(2*self.ring.optics.local_alpha[1] * self['y']*self['yp']) + \ (2*self.ring.optics.local_alpha[1] * self['y']*self['yp']) + \
(self.ring.optics.local_beta[1] * self['yp']**2) (self.ring.optics.local_beta[1] * self['yp']**2)
return np.array((np.mean(Jx),np.mean(Jy))) Js = (self.ring.long_gamma * self['tau']**2) + \
(2*self.ring.long_alpha * self['tau']*self['delta']) + \
(self.ring.long_beta * self['delta']**2)
return np.array((np.mean(Jx), np.mean(Jy), np.mean(Js)))
def init_gaussian(self, cov=None, mean=None, **kwargs): def init_gaussian(self, cov=None, mean=None, **kwargs):
""" """
...@@ -778,7 +781,7 @@ class Beam: ...@@ -778,7 +781,7 @@ class Beam:
def bunch_cs(self): def bunch_cs(self):
"""Return an array with the average Courant-Snyder invariant for each """Return an array with the average Courant-Snyder invariant for each
bunch""" bunch"""
bunch_cs = np.zeros((2,self.ring.h)) bunch_cs = np.zeros((3,self.ring.h))
for idx, bunch in enumerate(self.not_empty): for idx, bunch in enumerate(self.not_empty):
index = self.bunch_index[idx] index = self.bunch_index[idx]
bunch_cs[:,index] = bunch.cs_invariant bunch_cs[:,index] = bunch.cs_invariant
......
...@@ -82,11 +82,21 @@ class Synchrotron: ...@@ -82,11 +82,21 @@ class Synchrotron:
Relativistic Lorentz gamma. Relativistic Lorentz gamma.
beta : float beta : float
Relativistic Lorentz beta. Relativistic Lorentz beta.
long_alpha : float
Longitudinal alpha Twiss parameter at the tracking location.
Initialized at zero.
long_beta : float
Longitudinal beta Twiss parameter at the tracking location in [s].
Initialized at zero.
long_gamma : float
Longitudinal gamma Twiss parameter at the tracking location in [s-1].
Initialized at zero.
Methods Methods
------- -------
synchrotron_tune(V) synchrotron_tune(V)
Compute the synchrotron tune for single or multi-harmonic RF systems. Compute the (unperturbed) synchrotron tune from main RF voltage.
sigma(position) sigma(position)
Return the RMS beam size at equilibrium in [m]. Return the RMS beam size at equilibrium in [m].
eta(delta) eta(delta)
...@@ -100,11 +110,17 @@ class Synchrotron: ...@@ -100,11 +110,17 @@ class Synchrotron:
componenet from AT lattice. componenet from AT lattice.
get_mcf_order() get_mcf_order()
Compute momentum compaction factor up to 3rd order from AT lattice. Compute momentum compaction factor up to 3rd order from AT lattice.
get_longitudinal_twiss(V)
Compute the longitudinal Twiss parameters and the synchrotron tune for
single or multi-harmonic RF systems.
""" """
def __init__(self, h, optics, particle, **kwargs): def __init__(self, h, optics, particle, **kwargs):
self._h = h self._h = h
self.particle = particle self.particle = particle
self.optics = optics self.optics = optics
self.long_alpha = 0
self.long_beta = 0
self.long_gamma = 0
if self.optics.use_local_values == False: if self.optics.use_local_values == False:
self.L = kwargs.get('L', self.optics.lattice.circumference) self.L = kwargs.get('L', self.optics.lattice.circumference)
...@@ -317,56 +333,22 @@ class Synchrotron: ...@@ -317,56 +333,22 @@ class Synchrotron:
self.optics.dispersion(position)[3]**2*self.sigma_delta**2)**0.5 self.optics.dispersion(position)[3]**2*self.sigma_delta**2)**0.5
return sigma return sigma
def synchrotron_tune(self, V, phase=None, harmonics=None): def synchrotron_tune(self, V):
""" """
Compute the synchrotron tune for single or multi-harmonic RF systems. Compute the (unperturbed) synchrotron tune from main RF voltage.
Hypthesis:
- Use the linear approximation (tau ~ 0).
- For higher haromics only, cos(phi) ~ 0 must be true.
Parameters Parameters
---------- ----------
V : float or array-like of float V : float
RF voltage in [V]. Main RF voltage in [V].
phase : float or array-like of float, optional
RF phase using cosine convention in [rad].
Default is None.
harmonics : int or array-like of int, optional
Harmonics of the cavities to consider.
Default is None.
Usage
-----
- If a single voltage value is given, compute the synchrotron tune for
a single RF system set at the synchronous phase.
- If a single pair of voltage/phase value is given, compute the
synchrotron tune for a single RF system.
- Otherwise, compute the synchrotron tune for a multi-harmonic RF
system.
Returns Returns
------- -------
tuneS : float tuneS : float
Synchrotron tune in the linear approximation. Synchrotron tune.
""" """
Vsum = V * np.sin(np.arccos(self.U0/V))
if isinstance(V, float) or isinstance(V, int):
V = [V]
if phase is None:
phase = [np.arccos(self.U0/V[0])]
elif isinstance(phase, float) or isinstance(phase, int):
phase = [phase]
if harmonics is None:
harmonics = [1]
if not (len(V) == len(phase) == len(harmonics)):
raise ValueError("You must provide array of the same length for"
" V, phase and harmonics")
Vsum = 0
for i in range(len(V)):
Vsum += harmonics[i] * V[i] * np.sin(phase[i])
phi = np.arccos(1 - self.eta(0) * np.pi * self.h / self.E0 * Vsum) phi = np.arccos(1 - self.eta(0) * np.pi * self.h / self.E0 * Vsum)
tuneS = phi / (2 * np.pi) tuneS = phi / (2 * np.pi)
return tuneS return tuneS
...@@ -438,3 +420,75 @@ class Synchrotron: ...@@ -438,3 +420,75 @@ class Synchrotron:
self.mcf_order = pvalue self.mcf_order = pvalue
else: else:
return pvalue return pvalue
def get_longitudinal_twiss(self, V, phase=None, harmonics=None, add=True):
"""
Compute the longitudinal Twiss parameters and the synchrotron tune for
single or multi-harmonic RF systems.
Hypthesis:
- Use the linear approximation (tau ~ 0).
- For higher haromics only, cos(phi) ~ 0 must be true.
Parameters
----------
V : float or array-like of float
RF voltage in [V].
phase : float or array-like of float, optional
RF phase using cosine convention in [rad].
Default is None.
harmonics : int or array-like of int, optional
Harmonics of the cavities to consider.
Default is None.
add : bool, optional
If True,
Usage
-----
- If a single voltage value is given, assume a single RF system set at
the synchronous phase.
- If a single pair of voltage/phase value is given, assume a single RF
system at this setting.
- Otherwise, compute the synchrotron tune for a multi-harmonic RF
system.
Returns
-------
tuneS : float
Synchrotron tune in the linear approximation.
long_alpha : float
Longitudinal alpha Twiss parameter at the tracking location.
long_beta : float
Longitudinal beta Twiss parameter at the tracking location in [s].
long_gamma : float
Longitudinal gamma Twiss parameter at the tracking location in [s-1].
"""
if isinstance(V, float) or isinstance(V, int):
V = [V]
if phase is None:
phase = [np.arccos(self.U0/V[0])]
elif isinstance(phase, float) or isinstance(phase, int):
phase = [phase]
if harmonics is None:
harmonics = [1]
if not (len(V) == len(phase) == len(harmonics)):
raise ValueError("You must provide array of the same length for"
" V, phase and harmonics")
Vsum = 0
for i in range(len(V)):
Vsum += harmonics[i] * V[i] * np.sin(phase[i])
phi = np.arccos(1 - self.eta(0) * np.pi * self.h / self.E0 * Vsum)
long_alpha = - self.eta(0) * np.pi * self.h / (self.E0 * np.sin(phi)) * Vsum
long_beta = self.eta(0) * self.T0 / np.sin(phi)
long_gamma = self.omega1 * Vsum / (self.E0 * np.sin(phi))
tuneS = phi / (2 * np.pi)
if add:
self.tuneS = tuneS
self.long_alpha = long_alpha
self.long_beta = long_beta
self.long_gamma = long_gamma
else:
return tuneS, long_alpha, long_beta, long_gamma
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment