Skip to content
Snippets Groups Projects
Select Git revision
  • 851984115e056653d2d79d475f82153c8e536cca
  • stable default protected
  • feature-particle-in-cell
  • feature-quad_wakes_LongRangeResistiveWall
  • prepare-0.9.0
  • Resisitve_wall_eff_radius_yokoya
  • develop protected
  • feature-iqdamper0
  • feature-feedback-IQ-damper0
  • feature-read_wakis
  • use-one-bin
  • RF-FBv0.6
  • RF-FBv0.5
  • faster_pytorch
  • RF-FB
  • util
  • RFBucket
  • Long-range_wakepotential
  • 0.8.0
  • 0.7.0
  • 0.6.0
  • 0.5.0
  • 0.4
  • 0.3
  • 0.2
  • 0.1
26 results

tools.py

Blame
  • Code owners
    Assign users and groups as approvers for specific file changes. Learn more.
    tools.py 2.43 KiB
    # -*- coding: utf-8 -*-
    """
    This module defines utilities functions, helping to deals with tracking output 
    and hdf5 files.
    
    @author: Alexis Gamelin
    """
    
    import h5py as hp
    
    def merge_files(files_prefix, files_number, file_name=None):
        """
        Merge several hdf5 files into one.
        
        The function assumes that the files to merge have names in the follwing 
        format:
            - "files_prefix_0.hdf5"
            - "files_prefix_1.hdf5"
            ...
            - "files_prefix_files_number.hdf5"
    
        Parameters
        ----------
        files_prefix : str
            Name of the files to merge.
        files_number : int
            Number of files to merge.
        file_name : str, optional
            Name of the file with the merged data. If None, files_prefix without
            number is used.
    
        """
        if file_name == None:
            file_name = files_prefix
        f = hp.File(file_name + ".hdf5", "a")
        
        ## Create file architecture
        f0 = hp.File(files_prefix + "_" + str(0) + ".hdf5", "r")
        for group in list(f0):
            f.require_group(group)
            for dataset_name in list(f0[group]):
                if dataset_name == "freq":
                    f0[group].copy(dataset_name, f[group])
                    continue
                shape = f0[group][dataset_name].shape
                dtype = f0[group][dataset_name].dtype
                shape_needed = list(shape)
                shape_needed[-1] = shape_needed[-1]*files_number
                shape_needed = tuple(shape_needed)
                f[group].create_dataset(dataset_name, shape_needed, dtype)
                
        f0.close()
        
        ## Copy data
        for i in range(files_number):
            fi = hp.File(files_prefix + "_" + str(i) + ".hdf5", "r")
            for group in list(fi):
                for dataset_name in list(fi[group]):
                    shape = fi[group][dataset_name].shape
                    n_slice = int(len(shape) - 1)
                    length = shape[-1]
                    slice_list = []
                    for n in range(n_slice):
                        slice_list.append(slice(None))
                    slice_list.append(slice(length*i,length*(i+1)))
                    if (dataset_name == "freq"):
                        continue
                    if (dataset_name == "time") and (i != 0):
                        f[group][dataset_name][tuple(slice_list)] = f[group][dataset_name][(length*i) - 1] + fi[group][dataset_name]
                    else:
                        f[group][dataset_name][tuple(slice_list)] = fi[group][dataset_name]
            fi.close()
        f.close()