Skip to content
Snippets Groups Projects
  • BRONES Romain's avatar
    8f39791f
    Change the default logger creation · 8f39791f
    BRONES Romain authored
    * It is now possible to pass a str with a log level
    * If no logger is passed, we getLogger(__name__)
    * A stream handler is added on the newly created logger, only if it doesnt have one already.
    8f39791f
    History
    Change the default logger creation
    BRONES Romain authored
    * It is now possible to pass a str with a log level
    * If no logger is passed, we getLogger(__name__)
    * A stream handler is added on the newly created logger, only if it doesnt have one already.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
ArchiveExtractor.py 11.24 KiB
"""
Python module for extracting attribute from Arhive Extractor Device.
"""
import logging
import datetime
import numpy as np
import PyTango as tango

__version__ = "1.0.1"

##########################################################################
""" Commodity variables """

# Extractor date format for GetAttDataBetweenDates
DBDFMT = "%Y-%m-%d %H:%M:%S"

# Extractor date format for GetNearestValue
DBDFMT2 = "%d-%m-%Y %H:%M:%S"

# Vectorized fromtimestamp function
ArrayTimeStampToDatetime = np.vectorize(datetime.datetime.fromtimestamp)


class ArchiveExtractor:
    # Max number of point per extraction chunks
    Nmax = 100000

    ##########################################################################
    def __init__(
            self,
            extractorKind='H', extractorNumber=2,
            extractorPath=None,
            logger='info',
            ):
        """
        Constructor function

        Parameters
        ----------
        extractorKind: char
            Either 'H' or 'T' for HDB or TDB.

        extractorNumber: int
            Number of the archive extractor instance to use.

        extractorPath: string
            Tango path to the extractor.
            If this argument is given, it takes precedence over extractorKind and extractorNumber.

        logger: logging.Logger, str
            Logger object to use.
            If string, can be a log level. A basic logger with stream handler will be instanciated.
            Default to 'info'.

        Return
        ------
        ArchiveExtractor
        """

        #######################################################
        # Get logger
        if type(logger) == logging.Logger:
            self.logger = logger
        else:
            self.logger = logging.getLogger(__name__)
            self.logger.setLevel(getattr(logging, logger.upper()))
            if not self.logger.hasHandlers():
                # No handlers, create one
                sh = logging.StreamHandler()
                sh.setLevel(self.logger.level)
                sh.setFormatter(logging.Formatter("%(levelname)s:%(message)s"))
                self.logger.addHandler(sh)

        #######################################################
        # Select Extractor
        if extractorPath is None:
            self.extractor = tango.DeviceProxy(
                    "archiving/%sDBExtractor/%d"%(extractorKind, extractorNumber)
                    )
        else:
            self.extractor = tango.DeviceProxy(extractorPath)

        self.extractor.set_timeout_millis(3000)
        self.logger.debug("Archive Extractor %s used."%self.extractor.name())

    ##---------------------------------------------------------------------------##
    @staticmethod
    def dateparse(datestr):
        """
        Convenient function to parse date strings.
        Global format is %Y-%m-%d-%H:%M:%S and it can be reduced to be less precise.

        Parameters
        ---------
        datestr : string
            Date as a string, format %Y-%m-%d-%H:%M:%S or less precise.

        Exceptions
        ----------
        ValueError
            If the parsing failed.

        Returns
        -------
        date : datetime.datetime
            Parsed date
        """

        # This gives all format that will be tried, in order.
        # Stop on first parse success. Raise error if none succeed.
        fmt = [
            "%Y-%m-%d-%H:%M:%S",
            "%Y-%m-%d-%H:%M",
            "%Y-%m-%d-%H",
            "%Y-%m-%d",
            "%Y-%m",
            ]

        date = None
        for f in fmt:
            try:
                date = datetime.datetime.strptime(datestr, f)
            except ValueError:
                continue
            else:
                break
        else:
            raise ValueError("Could not parse argument to a date")

        return date

    ##---------------------------------------------------------------------------##
    def betweenDates(
            self,
            attribute,
            dateStart,
            dateStop=datetime.datetime.now(),
            ):
        """
        Query attribute data from an archiver database, get all points between dates.
        Use ExtractBetweenDates.

        Parameters
        ----------
        attribute : String
            Name of the attribute. Full Tango name i.e. "test/dg/panda/current".

        dateStart : datetime.datetime, string
            Start date for extraction. If string, it will be parsed.

        dateStop : datetime.datetime, string
            Stop date for extraction. If string, it will be parsed.
            Default is now (datetime.datetime.now())

        Exceptions
        ----------
        ValueError
            The attribute is not found in the database.

        Returns
        -------
        [date, value] : array
            date : numpy.ndarray of datetime.datime objects
                Dates of the values
            value : numpy.ndarray
                Archived values

        """

        # Parse date if it is string
        if type(dateStart) is str:
            dateStart = self.dateparse(dateStart)
        if type(dateStop) is str:
            dateStop = self.dateparse(dateStop)

        # Check that the attribute is in the database
        self.logger.debug("Check that %s is archived."%attribute)
        if not self.extractor.IsArchived(attribute):
            self.logger.error("Attribute '%s' is not archived in DB %s"%(attribute, extractor))
            raise ValueError("Attribute '%s' is not archived in DB %s"%(attribute, extractor))

        # Get the number of points
        N=self.extractor.GetAttDataBetweenDatesCount([
                attribute,
                dateStart.strftime(DBDFMT2),
                dateStop.strftime(DBDFMT2)
                ])
        self.logger.debug("On the period, there is %d entries"%N)

        # If data chunk is too much, we need to cut it
        if N > self.Nmax:
            dt = (dateStop-dateStart)/(N//self.Nmax)
            cdates = [dateStart]
            while cdates[-1] < dateStop:
                cdates.append(cdates[-1]+dt)
            cdates[-1] = dateStop
            self.logger.debug("Cutting access to %d little chunks of time, %s each."%(len(cdates)-1, dt))
        else:
            cdates=[dateStart, dateStop]

        # Arrays to hold every chunks
        value = []
        date = []

        # For each date chunk
        for i_d in range(len(cdates)-1):
            # Make retrieval request
            self.logger.debug("Perform ExtractBetweenDates (%s, %s, %s)"%(
                attribute,
                cdates[i_d].strftime(DBDFMT),
                cdates[i_d+1].strftime(DBDFMT))
                )

            _date, _value = self.extractor.ExtractBetweenDates([
                attribute,
                cdates[i_d].strftime(DBDFMT),
                cdates[i_d+1].strftime(DBDFMT)
                ])

            # Transform to datetime - value arrays
            _value = np.asarray(_value, dtype=float)
            if len(_date) > 0:
                _date = ArrayTimeStampToDatetime(_date/1000.0)

            value.append(_value)
            date.append(_date)

        self.logger.debug("Concatenate chunks")
        value = np.concatenate(value)
        date = np.concatenate(date)


        self.logger.debug("Extraction done for %s."%attribute)
        return [date, value]



    ##---------------------------------------------------------------------------##
    def betweenDates_MinMaxMean(
            self,
            attribute,
            dateStart,
            dateStop=datetime.datetime.now(),
            timeInterval=datetime.timedelta(seconds=60),
            ):
        """
        Query attribute data from an archiver database, get all points between dates.
        Use ExtractBetweenDates.

        Parameters
        ----------
        attribute : String
            Name of the attribute. Full Tango name i.e. "test/dg/panda/current".

        dateStart : datetime.datetime, string
            Start date for extraction. If string, it will be parsed.

        dateStop : datetime.datetime, string
            Stop date for extraction. If string, it will be parsed.
            Default is now (datetime.datetime.now())

        timeInterval: datetime.timedelta, string
            Time interval used to perform min,max and mean.
            Can be a string with a number and a unit in "d", "h", "m" or "s"

        Exceptions
        ----------
        ValueError
            The attribute is not found in the database.

        Returns
        -------
        [mdates, value_min, value_max, value_mean] : array
            mdates : numpy.ndarray of datetime.datime objects
                Dates of the values, middle of timeInterval windows
            value_min : numpy.ndarray
                Minimum of the value on the interval
            value_max : numpy.ndarray
                Maximum of the value on the interval
            value_mean : numpy.ndarray
                Mean of the value on the interval

        """

        # Parse date if it is string
        if type(dateStart) is str:
            dateStart = self.dateparse(dateStart)
        if type(dateStop) is str:
            dateStop = self.dateparse(dateStop)

        # Parse timeInterval if string
        if type(timeInterval) is str:
            try:
                mul = {'s':1, 'm':60, 'h':60*60, 'd':60*60*24}[timeInterval[-1]]
            except KeyError:
                self.logger.error("timeInterval could not be parsed")
                raise ValueError("timeInterval could not be parsed")
            timeInterval= datetime.timedelta(seconds=int(timeInterval[:-1])*mul)


        # Check that the attribute is in the database
        self.logger.debug("Check that %s is archived."%attribute)
        if not self.extractor.IsArchived(attribute):
            self.logger.error("Attribute '%s' is not archived in DB %s"%(attribute, extractor))
            raise ValueError("Attribute '%s' is not archived in DB %s"%(attribute, extractor))

        # Cut data range in time chunks
        cdates = [dateStart]
        while cdates[-1] < dateStop:
            cdates.append(cdates[-1]+timeInterval)
        cdates[-1] = dateStop
        mdates = np.asarray(cdates[:-1])+timeInterval/2
        self.logger.debug("Cutting time range to %d chunks of time, %s each."%(len(cdates)-1, timeInterval))

        # Prepare arrays
        value_min = np.empty(len(cdates)-1)
        value_max = np.empty(len(cdates)-1)
        value_mean = np.empty(len(cdates)-1)

        # For each time chunk
        for i_d in range(len(cdates)-1):
            for func, arr in zip(
                    ["Max", "Min", "Avg"],
                    [value_max, value_min, value_mean],
                    ):
                # Make requests
                self.logger.debug("Perform GetAttData%sBetweenDates (%s, %s, %s)"%(
                    func,
                    attribute,
                    cdates[i_d].strftime(DBDFMT2),
                    cdates[i_d+1].strftime(DBDFMT2))
                    )

                _val =getattr(self.extractor, "GetAttData%sBetweenDates"%func)([
                    attribute,
                    cdates[i_d].strftime(DBDFMT2),
                    cdates[i_d+1].strftime(DBDFMT2)
                    ])

                arr[i_d] = _val

        self.logger.debug("Extraction done for %s."%attribute)
        return [mdates, value_min, value_max, value_mean]