Skip to content
Snippets Groups Projects
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
ArchiveExtractor.py 14.76 KiB
#!/usr/Local/pyroot/PyTangoRoot/bin/python
"""
Python module for extracting attribute from Arhive Extractor Device.

Includes a Command Line Interface.
Can be imported as is to use function in user script.

"""
import logging
import datetime
import numpy as np
import PyTango as tango

__version__ = "1.0.1"


##########################################################################
""" Commodity variables """

# Extractor date format for GetAttDataBetweenDates
DBDFMT = "%Y-%m-%d %H:%M:%S"

# Extractor date format for GetNearestValue
DBDFMT2 = "%d-%m-%Y %H:%M:%S"

ArrayTimeStampToDatetime = np.vectorize(datetime.datetime.fromtimestamp)

##---------------------------------------------------------------------------##
def dateparse(datestr):
    """
    Convenient function to parse date strings.
    Global format is %Y-%m-%d-%H:%M:%S and it can be reduced to be less precise.

    Parameters
    ---------
    datestr : string
        Date as a string, format %Y-%m-%d-%H:%M:%S or less precise.

    Exceptions
    ----------
    ValueError
        If the parsing failed.

    Returns
    -------
    date : datetime.datetime
        Parsed date
    """
    logger.info("Parse date '%s'"%datestr)

    fmt = [
        "%Y-%m-%d-%H:%M:%S",
        "%Y-%m-%d-%H:%M",
        "%Y-%m-%d-%H",
        "%Y-%m-%d",
        "%Y-%m",
        ]

    date = None
    for f in fmt:
        logger.debug("Try format '%s'"%f)
        try:
            date = datetime.datetime.strptime(datestr, f)
        except ValueError:
            logger.debug("Parsing failed")

    if date is None:
        logger.error("Could not parse date")
        raise ValueError

    return date

##---------------------------------------------------------------------------##
def query_ADB_BetweenDates(attr,
              dateStart,
              dateStop=datetime.datetime.now(),
              extractor="archiving/TDBExtractor/4"):
    """
    Query attribute data from an archiver database, get all points between dates.
    Use ExtractBetweenDates.

    Parameters
    ----------
    attr : String
        Name of the attribute. Full Tango name i.e. "test/dg/panda/current".

    dateStart : datetime.datetime
        Start date for extraction.

    dateStop : datetime.datetime
        Stop date for extraction.
        Default is now (datetime.datetime.now())

    extractor : String
        Name of the DB Extractor device.
        Default is "archiving/TDBExtractor/4"

    Exceptions
    ----------
    ValueError
        The attribute is not found in the database.

    Returns
    -------
    [date, value] : array
        date : numpy.ndarray of datetime.datime objects
            Dates of the values
        value : numpy.ndarray
            Archived values

    """

    # Max number of point per extraction chunks
    Nmax = 100000

    # Device Proxy to DB
    logger.debug("Instantiate proxy to %s"%extractor)
    ADB = tango.DeviceProxy(extractor)

    # Give the DB extractor 3 seconds timeout
    ADB.set_timeout_millis(3000)

    # Check that the attribute is in the database
    logger.debug("Check that %s is archived."%attr)
    if not ADB.IsArchived(attr):
        logger.error("Attribute '%s' is not archived in DB %s"%(attr, extractor))
        raise ValueError("Attribute '%s' is not archived in DB %s"%(attr, extractor))

    # Get its sampling period in seconds
    req=ADB.GetArchivingMode(attr)
    logger.debug("GetArchivingMode: "+str(req))

    if req[0] == "MODE_P":
        samplingPeriod = int(req[1])*10**-3
        logger.debug("Attribute is sampled every %g seconds"%samplingPeriod)

    elif req[0] == "MODE_EVT":
        logger.warning("Attribute is archived on event. Chunks of data are sized with an estimated datarate of 0.1Hz")
        samplingPeriod = 10

    else:
        raise NotImplemented("Archive mode not implemented")


    # Evaluate the number of points
    est_N = (dateStop-dateStart).total_seconds()/samplingPeriod
    logger.debug("Which leads to %d points to extract."%est_N)

    # If data chunk is too much, we need to cut it
    if est_N > Nmax:
        dt = datetime.timedelta(seconds=samplingPeriod)*Nmax
        cdates = [dateStart]
        while cdates[-1] < dateStop:
            cdates.append(cdates[-1]+dt)
        cdates[-1] = dateStop
        logger.debug("Cutting access to %d little chunks of time, %s each."%(len(cdates)-1, dt))
    else:
        cdates=[dateStart, dateStop]

    # Arrays to hold every chunks
    value = []
    date = []

    # For each date chunk
    for i_d in range(len(cdates)-1):
        # Make retrieval request
        logger.debug("Perform ExtractBetweenDates (%s, %s, %s)"%(
            attr,
            cdates[i_d].strftime(DBDFMT),
            cdates[i_d+1].strftime(DBDFMT))
            )

        _date, _value = ADB.ExtractBetweenDates([
            attr,
            cdates[i_d].strftime(DBDFMT),
            cdates[i_d+1].strftime(DBDFMT)
            ])

        # Transform to datetime - value arrays
        _value = np.asarray(_value, dtype=float)
        if len(_date) > 0:
            _date = ArrayTimeStampToDatetime(_date/1000.0)

        value.append(_value)
        date.append(_date)

    logger.debug("Concatenate chunks")
    value = np.concatenate(value)
    date = np.concatenate(date)


    logger.debug("Extraction done for %s."%attr)
    return [date, value]

##---------------------------------------------------------------------------##
def query_ADB_BetweenDates_MinMaxMean(
                                        attr,
                                        dateStart,
                                        dateStop=datetime.datetime.now(),
                                        timeinterval=datetime.timedelta(seconds=60),
                                        extractor="archiving/TDBExtractor/4"):
    """
    Query attribute data from archiver database.
    Divide the time range in time intervals.
    Get min, max and mean value on each time interval.
    The date stamp is in the middle of the interval.

    Parameters
    ----------
    attr : String
        Name of the attribute. Full Tango name i.e. "test/dg/panda/current".

    dateStart : datetime.datetime
        Start date for extraction.

    dateStop : datetime.datetime
        Stop date for extraction.
        Default is now (datetime.datetime.now())

    timeinterval : datetime.timedelta
        Interval time to divide the time range in chunks.
        Default is 1 minute.

    extractor : String
        Name of the DB Extractor device.
        Default is "archiving/TDBExtractor/4"

    Exceptions
    ----------
    ValueError
        The attribute is not found in the database.

    Returns
    -------
    [date, value] : array
        date : numpy.ndarray of datetime.datime objects
            Dates of the values
        value : numpy.ndarray
            Archived values

    """

    # TEMP Dev not finished
    logger.error("Feature not implemented yet.")
    return

    # Device Proxy to DB
    logger.debug("Instantiate proxy to %s"%extractor)
    ADB = tango.DeviceProxy(extractor)

    # Give the DB extractor 3 seconds timeout
    ADB.set_timeout_millis(3000)

    # Check that the attribute is in the database
    logger.debug("Check that %s is archived."%attr)
    if not ADB.IsArchived(attr):
        logger.error("Attribute '%s' is not archived in DB %s"%(attr, extractor))
        raise ValueError("Attribute '%s' is not archived in DB %s"%(attr, extractor))

    # Cut data range in time chunks
    cdates = [dateStart]
    while cdates[-1] < dateStop:
        cdates.append(cdates[-1]+timeinterval)
    cdates[-1] = dateStop
    logger.debug("Cutting time range to %d chunks of time, %s each."%(len(cdates)-1, dt))

    # Prepare arrays
    value_min = np.empty(len(cdates-1))
    value_max = np.empty(len(cdates-1))
    value_mean = np.empty(len(cdates-1))

    # For each time chunk
    for i_d in range(len(cdates)-1):
        # Make requests
        logger.debug("Perform GetAttDataMaxBetweenDates (%s, %s, %s)"%(
            attr,
            cdates[i_d].strftime(DBDFMT),
            cdates[i_d+1].strftime(DBDFMT))
            )

        ADB.GetAttDataMaxBetweenDates([
            attr,
            cdates[i_d].strftime(DBDFMT),
            cdates[i_d+1].strftime(DBDFMT)
            ])


##---------------------------------------------------------------------------##
def query_ADB_NearestValue(attr,
                            dates,
                            extractor="archiving/TDBExtractor/4"):
    """
    Query attribute data from an archiver database, get nearest points from dates.
    Use GetNearestValue and perform multiple calls.
    For each date in dates, it read the closest sampled value.
    Return the real dates of the samples.

    Parameters
    ----------
    attr : String
        Name of the attribute. Full Tango name i.e. "test/dg/panda/current".

    dates : numpy.ndarray of datetime.datetime
        Dates for extraction.

    extractor : String
        Name of the DB Extractor device.
        Default is "archiving/TDBExtractor/4"

    Exceptions
    ----------
    ValueError
        The attribute is not found in the database.

    Returns
    -------
    [realdate, value] : array
        realdate : numpy.ndarray of datetime.datime objects
            Dates of the values
        value : numpy.ndarray
            Archived values

    """

    # Device Proxy to DB
    ADB = tango.DeviceProxy(extractor)

    # Give the DB extractor 3 seconds timeout
    ADB.set_timeout_millis(3000)

    # Check that the attribute is in the database
    if not ADB.IsArchived(attr):
        raise ValueError("Attribute '%s' is not archived in DB %s"%(attr, extractor))

    # Prepare arrays
    value = np.empty(len(dates), dtype=float)
    realdate = np.empty(len(dates), dtype=object)

    # Loop on dates
    for i in range(len(dates)):
        # Make retrieval

        answ = ADB.GetNearestValue([attr, dates[i].strftime(DBDFMT2)])
        answ = answ.split(";")

        realdate[i] = datetime.datetime.fromtimestamp(int(answ[0])/1000)
        value[i] = answ[1]

    return [realdate, value]



##########################################################################
""" Command Line Interface """
if __name__ == "__main__":

    # Name the logger after the filename
    logger = logging.getLogger("ArchiveExtractor")

    # Default stop date
    dateStop = datetime.datetime.now()

    # Default stop date
    dateStart = datetime.datetime.now()-datetime.timedelta(days=1)

    #######################################################
    # Install argument parser
    import argparse

    parser = argparse.ArgumentParser(description="Extract attributes from the extractor devices.\nVersion %s"%__version__)

    parser.add_argument("--from", type=dateparse, dest="dateStart",
        help="Start date for extraction, format '1990-12-13-22:33:45'. "+
        "It is possible to be less precise and drop, seconds, minutes, hours or even day."+
        " Default is one day ago",
        default=dateStart)

    parser.add_argument("--to", type=dateparse, dest="dateStop",
        help="Stop date for extraction, format '1990-12-13-22:33:45'. It is possible to be less precise and drop, seconds, minutes, hours or even day."+
        " Default is now.",
        default=dateStop)

    parser.add_argument("--DB", choices=["H", "T", "L"],
        default="T", help="Database to extract from. HDB (H) or TDB (T), default: %(default)s")

    parser.add_argument("--DBN", type=int, default=2,
            help="Extractor device number, default: %(default)s")

    parser.add_argument("--fileout", type=str, default="extracted_%s.npy"%datetime.datetime.now().strftime("%Y%m%d_%H%M%S"),
            help="filename of the extraction destination. Default: %(default)s"),

    parser.add_argument('--log', type=str, default="INFO",
            help="Log level. Default: %(default)s.")


    parser.add_argument('--filemode', action="store_true",
            help="Set attribute to filemode."+
            " Instead of specifying attributes, put a path to a file containing a list of attributes."+
            " The file contains one attribute per line.")

    parser.add_argument('attributes', type=str, nargs='+',
                        help="List of attributes to extract. Full tango path.")

    args = parser.parse_args()


    #######################################################
    # Configure logger

    # Add a stream handler
    s_handler = logging.StreamHandler()
    s_handler.setFormatter(logging.Formatter("%(levelname)s\t[%(funcName)s] \t%(message)s"))

    # Set level according to command line attribute
    s_handler.setLevel(level=getattr(logging, args.log.upper()))
    logger.setLevel(level=getattr(logging, args.log.upper()))
    logger.addHandler(s_handler)

    logger.debug("Parsed arguments: %s"%args)

    logger.info("Archive Extractor %s"%__version__)

    #######################################################
    # Filemode or not
    if args.filemode:
        logger.info("Filemode, openning file %s"%args.attributes[0])
        # Read the file. Each line is an attribute
        with open(args.attributes[0], "r") as fp:
            attributes = fp.readlines()

        logger.debug("Read lines : %s"%attributes)

        # Clean end of line
        for i_a in range(len(attributes)):
            attributes[i_a] = attributes[i_a].rstrip()

    else:
        attributes = args.attributes

    #######################################################
    # Select Extractor
    if args.DB == "L":
        extractor = "archiving/extractor/%d"%(args.DBN)
    else:
        extractor = "archiving/%sDBExtractor/%d"%(args.DB, args.DBN)

    #######################################################
    # Prepare dictionnary for result
    results = dict()

    #######################################################
    # Extract from database
    logger.info("Extract from %s to %s."%(args.dateStart, args.dateStop))

    for attr in attributes:
        logger.info("Extracting attribute %s..."%attr)

        for attempt in range(3):
            try:
                datevalue = query_ADB_BetweenDates(attr, args.dateStart, args.dateStop, extractor)

                # Add to result dictionnary
                results[attr] = datevalue

            except ValueError as e:
                logger.debug("ErrorMsg: %s"%e)
                logger.warning("Failed to extract %s. Skipping..."%attr)
            except (tango.CommunicationFailed, tango.DevFailed) as e:
                # retry
                logger.debug("ErrorMsg: %s"%e)
                logger.warning("Failed to extract %s. Retry..."%attr)
            break

        else:
            logger.error("The device %s might have crash.\n"%extractor+
                    "You should check with Jive and probably restart with Astor.\n")

        # Save all at each step
        np.save(args.fileout, results)

    logger.info("Extraction done, saved in file %s"%args.fileout)

else:
    # Name the logger after the module name
    logger = logging.getLogger(__name__)