Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# -*- coding: utf-8 -*-
"""
Tools for Soleil Synchrotron
@author: broucquart
"""
import numpy as np
import logging
import datetime
import matplotlib.colors as mcol
import pickle
import matplotlib
logger=logging.getLogger(__name__)
###############################################################################
# VECTORIZED DATE FUNCTIONS
###############################################################################
ArrayTimeStampToDatetime = np.vectorize(datetime.datetime.fromtimestamp)
ArrayDatetimeToTimeStamp = np.vectorize(datetime.datetime.timestamp)
ArrayStrpToDateTime = np.vectorize(lambda x : datetime.datetime.strptime(x, "%Y/%m/%d %H:%M:%S.%f"))
###############################################################################
# DATA IMPORTATION
###############################################################################
##---------------------------------------------------------------------------##
def load_filer_trend(filename, delimiter='\t'):
"""
Load data from a file generated by atkfilertrend.
Delimiter must be comma ','.
Parameters
----------
filename : String
Path to the file to load.
Returns
-------
ddata : dict
Dictionary of data. Key is the attribute tango path, data is the numpy
array of data.
The special key "Time" hold the timestamps.
"""
# Load the file data
logger.info("Load file %s"%filename)
data = np.genfromtxt(filename, skip_header=1, skip_footer=1, delimiter=delimiter).transpose()
logger.debug("data shape : %s"%str(data.shape))
# Read the first line and parse attribute names
with open(filename, 'r') as fp:
head = fp.readline()
# Split head
logger.debug("read head : %s"%head)
head = head.split(delimiter)
logger.debug("parsed head : %s"%str(head))
# Create the dictionnary
# Convert microsecond to seconds
# Convert timestamps to datetime
ddata = {"Time":ArrayTimeStampToDatetime(data[0]/1000)}
# Attach data to key in dict.
for i in range(1, len(head)-1):
ddata[head[i]] = data[i]
return ddata
##---------------------------------------------------------------------------##
def load_mambo_file(filename):
"""
Load data from a file extracted from Mambo.
Parameters
----------
filename : string
Filepath.
Returns
-------
ddata : dict
Dictionary of data. Key is the attribute tango path, data is a tuple of
two numpy arrays. First array is datetime values, second is attribute
value.
"""
# Load the file data as string
logger.info("Load file %s"%filename)
data = np.genfromtxt(filename, delimiter='\t', skip_header=1, dtype=str).transpose()
logger.debug("data shape : %s"%str(data.shape))
# Read the first line and parse attribute names
with open(filename, 'r') as fp:
head = fp.readline()
# Split head, remove last char (newline)
logger.debug("read head : %s"%head)
head = head[:-1].split('\t')
logger.debug("parsed head : %s"%str(head))
# Convert string to datetime
tdata = ArrayStrpToDateTime(data[0])
ddata = dict()
# Find correct values for each dataset (ignore "*")
# Add to dictionnary, key is the attribute tango path, value is tuple of
# time array and value array
for n in range(1, len(data)):
good=np.where(data[n]!="*")[0]
ddata[head[n]] = (tdata[good], data[n][good].astype(np.float))
return ddata
###############################################################################
# SIGNAL PROCESSING
###############################################################################
##---------------------------------------------------------------------------##
def MM(datax, datay, N, DEC=1):
"""
Mobile Mean along x. Averaging window of N points.
Parameters
----------
datax : numpy.ndarray
X axis, will only be cut at edge to match the length of mean Y.
Set to "None" if no X-axis
datay : numpy.ndarray
Y axis, will be averaged.
N : int
Averaging window length in points.
Returns
-------
Tuple of numpy.ndarray
(X axis, Y axis) averaged data.
"""
if datax is None:
return (np.arange(N//2, len(datay)-N//2+1)[::DEC],
np.convolve(datay, np.ones(N)/N, mode='valid')[::DEC])
return (np.asarray(datax[N//2:-N//2+1])[::DEC],
np.convolve(datay, np.ones(N)/N, mode='valid')[::DEC])
##---------------------------------------------------------------------------##
def meanstdmaxmin(x, y, N):
"""
Compute mean, max, min and +- std over block of N points on the Y axis.
Return arrays on length len(x)//N points.
Parameters
----------
x : numpy.ndarray
X vector, i.e sampling times.
y : numpy.ndarray
Y vector, i.e. values.
N : int
Number on points to average.
Returns
-------
xmean : numpy.ndarray
New x vector.
ymean : numpy.ndarray
Means of Y.
ystd : numpy.ndarray
Std of Y.
ymax : numpy.ndarray
Maxes of Y.
ymin : numpy.ndarray
Mins of Y..
"""
# If x vector is datetime, convert to timestamps
if type(x[0]) is datetime.datetime:
xIsDatetime=True
x = ArrayDatetimeToTimeStamp(x)
else:
xIsDatetime=False
# Quick verification on the X data vector jitter.
period = np.mean(x[1:]-x[:-1])
jitter = np.std(x[1:]-x[:-1])
if jitter > 0.01*period:
logger.warning("On X data vector : sampling jitter is over 1%% of the period. (j=%.3g, p=%.3g)"%(jitter, period))
# Get number of block of N points
_L=len(y)//N
# Reshape the arrays.
# Drop last points that does not fill a block of N points.
_x=np.reshape(x[:_L*N], (_L, N))
_y=np.reshape(y[:_L*N], (_L, N))
# compute the new x vector.
# Use mean to compute new absciss position
xmean = np.mean(_x, axis=1)
if xIsDatetime:
xmean = ArrayTimeStampToDatetime(xmean)
# Compute parameters
ymean = np.mean(_y, axis=1)
ystd = np.std(_y, axis=1)
ymin = np.min(_y, axis=1)
ymax = np.max(_y, axis=1)
return (xmean, ymean, ystd, ymax, ymin)
###############################################################################
## PLOTTING
###############################################################################
##---------------------------------------------------------------------------##
def plot_meanstdmaxmin(ax, datax, datay, N,
c=None, label=None):
"""
Plot on a ax the representation in mean, +- std and min max.
Parameters
----------
ax : matplotlib.axes._base._AxesBase
Ax on wich to plot.
datax : numpy.ndarray
X axis.
datay : numpy.ndarray
Y axis.
N : int
Number on points to average.
c : TYPE, optional
Color. The default is None.
label : TYPE, optional
Label. The default is None.
Returns
-------
lines : TYPE
DESCRIPTION.
"""
# For the first plot, consider the whole data range.
# Compute the averaging ratio. Minimum ratio is 1
ratio = max(len(datax)//N, 1)
# Compute new data
xmean, ymean, ystd, ymax, ymin = meanstdmaxmin(datax, datay, ratio)
lines=[]
# First, plot the mean with the given attributes
lines.append(ax.plot(xmean, ymean, color=c, label=label)[0])
# Retrieve the color, usefull if c was None
c=lines[0].get_color()
# Add max, min and std area
lines.append(ax.plot(xmean, ymax, linestyle='-', color=mcol.to_rgba(c, 0.5))[0])
lines.append(ax.plot(xmean, ymin, linestyle='-', color=mcol.to_rgba(c, 0.5))[0])
lines.append(ax.fill_between(xmean, ymean-ystd, ymean+ystd, color=mcol.to_rgba(c, 0.1)))
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
return lines
##---------------------------------------------------------------------------##
def plot_MM(ax, datax, datay, N, DEC=1,
c=None, label=None):
"""
Plot a signal with its mobile mean. The signal is plotted with transparency.
Parameters
----------
ax : matplotlib.axes._base._AxesBase
Axe on which to plot.
datax : numpy.ndarray, None
X axis data.
datay : numpy.ndarray
Y axis data.
N : int
Averaging window length in points.
c : TYPE, optional
Line color. The default is None.
label : str, optional
Line label. The default is None.
Returns
-------
lines : TYPE
DESCRIPTION.
"""
# To collect lines
lines=[]
# Plot mobile mean
_l=ax.plot(*MM(datax, datay, N, DEC), c=c, label=label)[0]
lines.append(_l)
# Retrieve the color, usefull if c was None
c=lines[0].get_color()
# Plot entire signal
if datax is None:
# Case no xaxis data
_l=ax.plot(datay, c=mcol.to_rgba(c, 0.4))[0]
else:
_l=ax.plot(datax, datay, c=mcol.to_rgba(c, 0.4))[0]
return lines
###############################################################################
## PLOT MANIPULATION
###############################################################################
##---------------------------------------------------------------------------##
def get_current_ax_zoom(ax):
"""
Get the current ax zoom setup and print the python command to set it exactly.
Parameters
----------
ax : numpy.ndarray
Array of ax.
Raises
------
NotImplementedError
When the type is not implemented. It is time to implement it !
Returns
-------
None.
"""
if type(ax) is np.ndarray:
for i in range(len(ax)):
print("ax[%d].set_xlim"%i+str(ax[i].get_xlim()))
print("ax[%d].set_ylim"%i+str(ax[i].get_ylim()))
return
raise NotImplementedError("Type is %s"%type(ax))
###############################################################################
## DATE PROCESSING
###############################################################################
##---------------------------------------------------------------------------##
def get_time_region(t, startDate, endDate):
"""
Return a range of index selecting the ones between the start and stop date.
Parameters
----------
t : numpy.ndarray
An array of datetime objects.
startDate : datetime.datetime
Start date.
endDate : datetime.datetime
Stop date.
Returns
-------
zone : numpy.ndarray
A numpy arange between both index.
"""
iT1 = np.searchsorted(t, startDate)
iT2 = np.searchsorted(t, endDate)
zone = np.arange(iT1, iT2)
if len(zone)==0:
logging.warning("Time zone is empty.")
return zone
###############################################################################
# DATA EXPORTATION
###############################################################################
##---------------------------------------------------------------------------##
def export_mpl(fig, filename):
"""
Export figure to .mpl file.
Parameters
----------
fig : matplotlib.figure.Figure
Figure to export.
filename : str
Filename, without extension.
Returns
-------
None.
"""
if not type(fig) is matplotlib.figure.Figure:
raise TypeError("Parameter fig should be a matplotlib figure (type matplotlib.figure.Figure).")
with open(filename+".mpl", 'wb') as fp:
pickle.dump(fig, fp)