Skip to content
Snippets Groups Projects
  • nadolski's avatar
    26f4b74e
    REname function · 26f4b74e
    nadolski authored
    Phase space introduced with tracking arounf 6D COD
    Phase space available in user interface
    26f4b74e
    History
    REname function
    nadolski authored
    Phase space introduced with tracking arounf 6D COD
    Phase space available in user interface
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
testtracy.cc 16.24 KiB
/* Current revision $Revision$
 On branch $Name$
 Latest change $Date$ by $Author$
*/

#define ORDER 1          

int no_tps = ORDER; // arbitrary TPSA order is defined locally

extern bool  freq_map;

#include "tracy_lib.h"


void compare_cod(void)
{
   const double dPmin = 1e-10, dPmax = 1e-6;
   int k;
   const int kmax = 20;
   double dp, dpstep = dPmax/kmax;
   FILE * outf;
   const char fic[] = "compare_cod.out";
   long lastpos = 0L;
   Vector        vector_findcod;

   /* Opening file */
   if ((outf = fopen(fic, "w")) == NULL) {
     fprintf(stdout, "compare_cod: error while opening file %s\n", fic);
     exit_(1);
   }
   fprintf(stdout,"\n");

   for (k = 0; k <= kmax; k++){
	   dp = dPmin + k*dpstep;
	   getcod(dp, lastpos); // get cod for printout
	   CopyVec(6, globval.CODvect, vector_findcod);
	   findcod(dp);
//	    fprintf(stdout,"%14.6e %14.6e %14.6e %14.6e %14.6e %14.6e %14.6e %14.6e %14.6e\n",
//	            dp, globval.CODvect[0], vector_findcod[0], globval.CODvect[1],vector_findcod[1],
//	            globval.CODvect[2], vector_findcod[2], globval.CODvect[3], vector_findcod[3]);
	    fprintf(stdout,"%14.6e %14.6e %14.6e %14.6e %14.6e %14.6e %14.6e %14.6e %14.6e\n",
	            dp,
	            globval.CODvect[0], (globval.CODvect[0]-vector_findcod[0])/globval.CODvect[0],
	            globval.CODvect[1], (globval.CODvect[1]-vector_findcod[1])/globval.CODvect[1],
	            globval.CODvect[2], (globval.CODvect[2]-vector_findcod[2])/globval.CODvect[2],
	            globval.CODvect[3], (globval.CODvect[3]-vector_findcod[3])/globval.CODvect[3]);
   }
   fclose(outf);
}

#define LOG10 log(10.0)

void Getchrom2(double dP)
{
	  long lastpos = 0L;
	  double dPlocal = 0.0, expo = 0.0, TEMP = 0.0, TEMPX = 0.0, TEMPZ = 0.0;
	  Vector2 alpha={0.0,0.0}, beta={0.0,0.0}, gamma={0.0,0.0}, nu={0.0,0.0},
	          nu0={0.0,0.0}, Chrom={0.0,0.0};
	  trace = false;
	  if (dP != 0.0) {
	    fprintf(stderr,"Ring_Getchrom: Warning this is NOT the CHROMA, dP=%e\n",dP);
	  }

	  /* initialization */
	  globval.Chrom[0] = 1e38;
	  globval.Chrom[1] = 1e38;

	  expo = log(globval.dPcommon) / LOG10;
	  do
	  {
	    Chrom[0] = globval.Chrom[0];
	    Chrom[1] = globval.Chrom[1];

	    dPlocal = exp(expo*LOG10);

	    /* Get cod for energy dP - dPlocal*/
	    GetCOD(globval.CODimax, globval.CODeps, dP - dPlocal*0.5,
	                 lastpos);

	    if (!status.codflag)
	    { /* if no cod */
	      fprintf(stderr,"Ring_Getchrom:  Lattice is unstable for dP - dPlocal=% .5e\n",
	              dP - dPlocal*0.5);
	      return;
	    }

	    /* get tunes for energy dP - dPlocal/2 from oneturn matrix */
	    Cell_GetABGN(globval.OneTurnMat, alpha, beta, gamma, nu0);

	    /* Get cod for energy dP + dPlocal*/
	    GetCOD(globval.CODimax, globval.CODeps, dP + dPlocal*0.5,
	                lastpos);

	    if (!status.codflag) { /* if no cod */
	      fprintf(stderr,"Ring_Getchrom  Lattice is unstable for dP + dPlocal=% .5e \n",
	              dP + dPlocal*0.5);
	      return;
	    }
	    /* get tunes for energy dP + dPlocal/2 from oneturn matrix */
	    Cell_GetABGN(globval.OneTurnMat, alpha, beta, gamma, nu);

	    if (!globval.stable) {
	      printf("Ring_Getchrom:  Lattice is unstable\n");
	    }

	    /* Get chromaticities by numerical differentiation*/
	    globval.Chrom[0] = (nu[0] - nu0[0]) / dPlocal;
	    globval.Chrom[1] = (nu[1] - nu0[1]) / dPlocal;

	    TEMP=sqrt(
	    fabs(globval.Chrom[0]*globval.Chrom[0]- Chrom[0]*Chrom[0])
	     +fabs(globval.Chrom[1]*globval.Chrom[1]- Chrom[1]*Chrom[1])
	    );
	    TEMPX = sqrt(fabs(globval.Chrom[0]*globval.Chrom[0]- Chrom[0]*Chrom[0]));
	    TEMPZ = sqrt(fabs(globval.Chrom[1]*globval.Chrom[1]- Chrom[1]*Chrom[1]));
	    // TEST CHROMA convergence
	  if (trace) {
	  fprintf(stdout,"\nexpo % e xix = % e xiz = % e TEMP = %e TEMPX %+e TEMPZ %+e\n",
	      expo,Chrom[0],Chrom[1],TEMP, TEMPX, TEMPZ);
	  fprintf(stdout,"expo % e nux = % e nuz = % e dPlocal= %+e\n",
	      expo,nu0[0],nu0[1],dP-0.5*dPlocal);
	  fprintf(stdout,"expo % e nux = % e nuz = % e dPlocal= %+e\n",
	      expo,nu[0],nu[1],dP+0.5*dPlocal);
	    }
	  fprintf(stdout, "%+e %+.12e %+.12e %+.12e %+.12e\n", dPlocal,
			  globval.Chrom[0], fabs(globval.Chrom[0]-Chrom[0])/Chrom[0],
			  globval.Chrom[1], fabs(globval.Chrom[1]-Chrom[1])/Chrom[1]);
	  expo += 0.1;
	  } while (expo<-2);
	  status.chromflag = true;

}
//***************************************************************************************
//
//  MAIN CODE
//
//****************************************************************************************
 int main(int argc, char *argv[])
{
  const long  seed = 1121;
  iniranf(seed); setrancut(2.0);

  // turn on globval.Cavity_on and globval.radiation to get proper synchr radiation damping
  // IDs accounted too if: wiggler model and symplectic integrator (method = 1)
  globval.H_exact     = false; 
  globval.quad_fringe = false;              // quadrupole fringe field
  globval.radiation   = false;             // synchrotron radiation
  globval.emittance   = false;             // emittance
  globval.pathlength  = false; 
//  globval.bpm         = 0;
  
//  const double  x_max_FMA = 10e-3,  delta_FMA = 10e-2;
//  const int     n_x = 801, n_dp = 80, n_tr = 2048;
  
  double nux=0, nuz=0, ksix=0, ksiz=0;

  bool chroma;
  double dP = 0.0;
  long lastpos = -1L;
  char str1[S_SIZE];

  // for time handling
  uint32_t         start, stop;

  /************************************************************************
      start read in files and flags
  *************************************************************************/
  if (argc > 1){
  read_script(argv[1], true);}
  else{
	  fprintf(stdout, "Not enough parameters\nSyntax is program parameterfile\n");
	  return 1;
  }



 /************************************************************************
    end  read in files and flags
  *************************************************************************/
  prtmfile("flat_file.dat"); // writes flat file   /* very important file for debug*/
  printlatt();  /* SOLEIL print out lattice functions */
  printglob();
  
  double V_RF;
  V_RF = get_RFVoltage(ElemIndex("cav"));
  set_RFVoltage(ElemIndex("cav"), 3e6); // 3 MV
  V_RF = get_RFVoltage(ElemIndex("cav"));

    // Flag factory
    
    // Chamber factory
  if (ChamberFlag == false)
     ChamberOff(); // turn off vacuum chamber setting, use the default one
  else if (ChamberNoU20Flag == true)
     DefineChNoU20();  // using vacuum chamber setting but without undulator U20
  else if (ReadChamberFlag == true)
     ReadCh(chamber_file); /* read vacuum chamber from a file "Apertures.dat" , soleil version*/
  PrintCh(); // print chamber into chamber.out
 
  //get_matching_params_scl(); // get tunes and beta functions at entrance
  get_alphac2(); // compute up to 3rd order mcf
  //cout << endl << "computing tune shifts" << endl;
  //dnu_dA(10e-3, 5e-3, 0.002);
  //get_ksi2(0.0); // this gets the chromas and writes them into chrom2.out

 
  // compute tunes by tracking (should be the same as by DA)
  if (TuneTracFlag == true) {
    GetTuneTrac(1026L, 0.0, &nux, &nuz);
    fprintf(stdout,"From tracking: nux = % f nuz = % f \n",nux,nuz);
  }

  // compute chromaticities by tracking (should be the same as by DA)
  if (ChromTracFlag == true){
	start = stampstart();
	GetChromTrac(2L, 1026L, 1e-5, &ksix, &ksiz);
	stop = stampstop(start);

    fprintf(stdout,"From tracking: ksix= % f ksiz= % f \n",ksix,ksiz);
  }


  if (FitTuneFlag == true){
    fprintf(stdout, "\n Fitting tunes\n");
    FitTune(ElemIndex("qp7"),ElemIndex("qp9"), targetnux, targetnuz);
    Ring_GetTwiss(chroma=true, 0.0);  /* Compute and get Twiss parameters */
    printglob();                      /* print parameter list */
  }

  if (FitChromFlag == true){
    fprintf(stdout, "\n Fitting chromaticities\n");
    FitChrom(ElemIndex("sx9"),ElemIndex("sx10"), targetksix, targetksiz);
    Ring_GetTwiss(chroma=true, 0.0);  /* Compute and get Twiss parameters */
    printglob();                      /* print parameter list */
  }

  // coupling calculation
   if (CouplingFlag == true){
     Ring_GetTwiss(chroma=true, 0.0);  /* Compute and get Twiss parameters */
     printlatt();                      /* dump linear lattice functions into "linlat.dat" */
     GetEmittance(ElemIndex("cav"), true);
     Coupling_Edwards_Teng();
     printglob();   /* print parameter list */
   }

  // add coupling by random rotating of the quadrupoles
  if (ErrorCouplingFlag == true){
    SetErr();
    Ring_GetTwiss(chroma=true, 0.0);  /* Compute and get Twiss parameters */
    printlatt();                      /* dump linear lattice functions into "linlat.dat" */
    Coupling_Edwards_Teng();
    GetEmittance(ElemIndex("cav"), true);
    printglob();   /* print parameter list */
  }

  // WARNING Fit tunes and chromaticities before applying errors !!!!
  //set multipoles in all magnets
  if (MultipoleFlag == true ){
    if (ThinsextFlag ==true){
      fprintf(stdout, "\n Setting Multipoles for lattice with thin sextupoles \n");
      Multipole_thinsext(fic_hcorr,fic_vcorr,fic_skew);  /* for thin sextupoles */
      Ring_GetTwiss(chroma=true, 0.0);  /* Compute and get Twiss parameters */
      printglob(); 
     }
    else{
      fprintf(stdout, "\n Setting Multipoles for lattice with thick sextupoles \n");
      Multipole_thicksext(fic_hcorr,fic_vcorr,fic_skew);  /* for thick sextupoles */
      Ring_GetTwiss(chroma=true, 0.0);  /* Compute and get Twiss parameters */
      printglob(); 
    }
  }

 /******************************************************************************************/
 // COMPUTATION PART after setting the model
 /******************************************************************************************/

  //first print the full lattice with error as a flat file
  prtmfile("flat_file_error.dat"); // writes flat file   /* very important file for debug*/

// computes TuneShift with amplitudes
  if (AmplitudeTuneShiftFlag == true){
    if (ChamberFlag == true ){
    	TunesShiftWithAmplitude(_AmplitudeTuneShift_nxpoint,
	         _AmplitudeTuneShift_nypoint, _AmplitudeTuneShift_nturn,
	         _AmplitudeTuneShift_xmax, _AmplitudeTuneShift_ymax,
	         _AmplitudeTuneShift_delta);
      //NuDx(31L,21L,516L,0.025,0.005,dP);
      }
      else{ // Utility ?
        TunesShiftWithAmplitude(50L,30L,516L,0.035,0.02,dP);
      }

  }
  if (EnergyTuneShiftFlag == true){
    if (ChamberFlag == true ){
    	TunesShiftWithEnergy(_EnergyTuneShift_npoint,
    	     _EnergyTuneShift_nturn, _EnergyTuneShift_deltamax);
      //NuDp(31L,1026L,0.06);
      }
      else{ // utility ?
        TunesShiftWithEnergy(31L,1026L,0.06);
      }

  }

 // Computes FMA
  if (FmapFlag == true){
    if (ChamberFlag == true ){
      if (ExperimentFMAFlag == true)
          fmap( _FmapFlag_nxpoint, _FmapFlag_nypoint,
          		_FmapFlag_nturn, _FmapFlag_xmax, _FmapFlag_ymax,
          		_FmapFlag_delta, _FmapFlag_diffusion);
    	  //fmap(40,12,258,-20e-3,5e-3,0.0,true); // for experimental
      if (DetailedFMAFlag == true)
        fmap(100,50,1026,20e-3,5e-3,0.0,true);
      }
      else{ // Utility
        if (ExperimentFMAFlag == true)
          fmap(40,12,258,-32e-3,5e-3,0.0,true);
        if (DetailedFMAFlag == true)
          fmap(200,100,1026,32e-3,7e-3,0.0,true);
      }
  }
  
  if (CodeComparaisonFlag){
          fmap(200,100,1026,-32e-3,7e-3,0.0,true);
  }

  // MOMENTUM ACCEPTANCE
  if (MomentumAccFlag == true){
	  MomentumAcceptance(
	  _MomentumAccFlag_istart, _MomentumAccFlag_istop,
	  _MomentumAccFlag_deltaminp, _MomentumAccFlag_deltamaxp, _MomentumAccFlag_nstepp,
	  _MomentumAccFlag_deltaminn, _MomentumAccFlag_deltamaxn, _MomentumAccFlag_nstepn);
	 // MomentumAcceptance(1L, 108L, 0.01, 0.05, 100L, -0.01, -0.05, 100L);
  }


  // induced amplitude 
  if (InducedAmplitudeFlag == true){
      InducedAmplitude(193L);  
  }
  
  if (EtaFlag == true){
  // compute cod and twiss parameters for different energy offsets    
    for (int ii=0; ii<=40; ii++) { 
    dP = -0.02+ 0.001*ii;
    Ring_GetTwiss(chroma=false, dP);   /* Compute and get Twiss parameters */
    printlatt();                      /* dump linear lattice functions into "linlat.dat" */
    getcod (dP, lastpos);
//     printcod();
    prt_cod("cod.out", globval.bpm, true);
    //system("mv linlat.out linlat_ooo.out"); 
    sprintf(str1, "mv cod.out cod_%02d.out", ii); 
    system(str1);
    sprintf(str1, "mv linlat.out linlat_%02d.out", ii); 
    system(str1);
    }
}    
  

  if (PhaseSpaceFlag == true){
		start = stampstart();
		Phase(0.001,0,0.001,0,0.001,0, 1);
	    printf("the simulation time for phase space in tracy 3 is \n");
		stop = stampstop(start);
  }
  
  //compare_cod();
  Getchrom2(0.0);
  return 0;

   /*********************************************************************************
         Delicated for max4 lattice. To load alignment error files and do correction
  ----------------------------------------------------------------------------------
  *********************************************************************************/
  if (false) {
    //prt_cod("cod.out", globval.bpm, true); //prints a specific closed orbit with corrector strengths
    
    
    globval.bpm = ElemIndex("bpm_m");                   //definition for max4 lattice, bpm
  //  globval.bpm = ElemIndex("bpm");                         
    globval.hcorr = ElemIndex("corr_h"); globval.vcorr = ElemIndex("corr_v");    //definition for max4 lattice, correctors
   // globval.hcorr = ElemIndex("ch"); globval.vcorr = ElemIndex("cv");
    globval.gs = ElemIndex("GS"); globval.ge = ElemIndex("GE");   //definition for max4 lattice, girder maker
    
    
    //compute response matrix (needed for OCO)
    gcmat(globval.bpm, globval.hcorr, 1);  gcmat(globval.bpm, globval.vcorr, 2);
     

    //print response matrix (routine in lsoc.cc)
    //prt_gcmat(globval.bpm, globval.hcorr, 1);  prt_gcmat(globval.bpm, globval.vcorr, 2);
       
    //gets response matrix, does svd, evaluates correction for N seed orbits
    //get_cod_rms_scl(dx, dy, dr, n_seed)
    //get_cod_rms_scl(100e-6, 100e-6, 1.0e-3, 100); //trim coils aren't reset when finished
       

    //for alignments errors check LoadAlignTol (in nsls_ii_lib.cc) and AlignErr.dat
    //CorrectCOD_N("/home/simon/projects/src/lattice/AlignErr.dat", 3, 1, 1);
   
    //for field errors check LoadFieldErr(in nsls_ii_lib.cc) and FieldErr.dat
    //LoadFieldErr("/home/simon/projects/src/lattice/FieldErr.dat", true, 1.0, true);
   
    //for alignments errors check LoadAlignTol (in nsls_ii_lib.cc) and AlignErr.dat
    //LoadAlignTol("/home/simon/projects/src/lattice/AlignErr.dat", true, 1.0, true, 1);
    //LoadAlignTol("/home/simon/projects/out/20091126/AlignErr.dat", true, 1.0, true, 1);
    //prt_cod("cod_err.out", globval.bpm, true); //prints a specific closed orbit with corrector strengths
   
      
    // delicated for max4 lattice
    //load alignment errors and field errors, correct orbit, repeat N times, and get statistics
    get_cod_rms_scl_new(1); //trim coils aren't reset when finished
  
    
    //for aperture limitations use LoadApers (in nsls_ii_lib.cc) and Apertures.dat
    //globval.Aperture_on = true;
    //LoadApers("/home/simon/projects/src/lattice/Apertures.dat", 1, 1);
    
  }



/*******************************************************************************
    Call nsls-ii_lib.cc
-----------------------------------------------------------------------------  
*******************************************************************************/
  // 
  // tune shift with amplitude 
  double delta = 0;
  if (false) {
    cout << endl;
    cout << "computing tune shifts" << endl;
    dnu_dA(25e-3, 5e-3, 0.0);
    get_ksi2(delta); // this gets the chromas and writes them into chrom2.out
 // get_ksi2(5.0e-2); // this gets the chromas and writes them into chrom2.out
  }
  
  if (false) {
    //fmap(n_x, n_y, n_tr, x_max_FMA, y_max_FMA, 0.0, true, false);
//    fmapdp(n_x, n_dp, n_tr, x_max_FMA, -delta_FMA, 1e-3, true, false); // always use -delta_FMA (+delta_FMA appears broken)
    fmapdp(n_x, n_dp, n_tr, x_max_FMA, -delta_FMA, 1e-3, true); // always use -delta_FMA (+delta_FMA appears broken)
  } else {
    globval.Cavity_on = true; // this gives longitudinal motion
    globval.radiation = false; // this adds ripple around long. ellipse (needs many turns to resolve damp.)
    //globval.Aperture_on = true;
    //LoadApers("/home/simon/projects/src/lattice/Apertures.dat", 1, 1);
    //get_dynap_scl(delta, 512);
  }
    
}