Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
/* nrframe.c **************************************************************
NR Library Package - Homogeneous Transformation Frames
James Trevelyan, University of Western Australia
Revision 2 January 1996
**************************************************************************/
/* define V_CHECK to include validity checks on matrices */
#define V_CHECK
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "nrlin.h"
#define True 1
#define False 0
#define X 1
#define Y 2
#define Z 3
#define U 4
#ifdef TEST
extern FILE *outfile;
extern double **F1;
#endif
double **SCR;
double **dframe( void )
{
return ( dmatrix( 1, 4, 1, 4 ) );
}
double *d4vector( void )
{
return ( dvector( 1, 4 ) );
}
void chainmult( double **a, double **b )
/* multiply 4*4 matrices a, b into a, using SCR scratch matrix above */
{
static int once = 0;
if ( !once ) {
SCR = dmatrix( 1,4, 1,4 );
once = True;
}
#ifdef V_CHECK
if ( !valid_dframe( a ) )
nrerror("Invalid 1st matrix: chainmult\n");
if ( !valid_dframe( b ) )
nrerror("Invalid 2nd matrix: chainmult\n");
#endif
dmmult( a, 4, 4, b, 4, 4, SCR );
dmcopy( SCR, 4, 4, a );
}
void rotframe( double **a, int axis, double theta) /* make a rotation transform */
{
double ca, sa;
int i,j;
#ifdef V_CHECK
if ( !valid_dframe( a ) )
nrerror("Invalid matrix: rotframe\n");
#endif
ca = cos(theta);
sa = sin(theta);
for (i=1; i<=4; i++)
for (j=1; j<=4; j++) a[i][j] = 0.0;
switch( axis) {
case 3:
a[4][4] = a[3][3] = 1.0;
a[2][2] = a[1][1] = ca;
a[1][2] = -sa;
a[2][1] = sa;
break;
case 1:
a[4][4] = a[1][1] = 1.0;
a[2][2] = a[3][3] = ca;
a[2][3] = -sa;
a[3][2] = sa;
break;
case 2:
a[4][4] = a[2][2] = 1.0;
a[1][1] = a[3][3] = ca;
a[3][1] = -sa;
a[1][3] = sa;
break;
default:
fprintf(stderr, "rotframe: axis not X, Y or Z\n");
exit(1);
break;
}
}
void transframe( double **a, double dx, double dy, double dz)
/* make a translation tr'm */
{
int i,j;
#ifdef V_CHECK
if ( !valid_dframe( a ) )
nrerror("Invalid matrix: transframe\n");
#endif
for (i=1; i<=4; i++)
for (j=1; j<=4; j++) a[i][j] = 0.0;
a[4][4] = a[3][3] = 1.0;
a[2][2] = a[1][1] = 1.0;
a[1][4] = dx;
a[2][4] = dy;
a[3][4] = dz;
}
void orthog( double **a ) /* orthogonalize a frame */
{
int i, j, k;
double s;
#ifdef V_CHECK
if ( !valid_dframe( a ) )
nrerror("Invalid matrix: orthog\n");
#endif
/* cross j, k to produce i */
a[1][1] = a[2][2]*a[3][3] - a[3][2]*a[2][3];
a[2][1] = a[3][2]*a[1][3] - a[1][2]*a[3][3];
a[3][1] = a[1][2]*a[2][3] - a[2][2]*a[1][3];
/* normalize i, k */
s = sqrt(DSQR(a[1][3]) + DSQR(a[2][3]) + DSQR(a[3][3]));
for (i=1; i<=3; i++) a[i][3] /= s;
s = sqrt(DSQR(a[1][1]) + DSQR(a[2][1]) + DSQR(a[3][1]));
for (i=1; i<=3; i++) a[i][1] /= s;
/* cross k, i to produce j */
a[1][2] = a[2][3]*a[3][1] - a[3][3]*a[2][1];
a[2][2] = a[3][3]*a[1][1] - a[1][3]*a[3][1];
a[3][2] = a[1][3]*a[2][1] - a[2][3]*a[1][1];
}
void orthogKI( double **a ) /* orthogonalize a frame using K & I vector */
{
int i, j, k;
double s;
#ifdef V_CHECK
if ( !valid_dframe( a ) )
nrerror("Invalid matrix: orthog\n");
#endif
/* cross k, i to produce j */
a[1][2] = a[2][3]*a[3][1] - a[3][3]*a[2][1];
a[2][2] = a[3][3]*a[1][1] - a[1][3]*a[3][1];
a[3][2] = a[1][3]*a[2][1] - a[2][3]*a[1][1];
/* normalize j, k */
s = sqrt(DSQR(a[1][3]) + DSQR(a[2][3]) + DSQR(a[3][3]));
for (i=1; i<=3; i++) a[i][3] /= s;
s = sqrt(DSQR(a[1][2]) + DSQR(a[2][2]) + DSQR(a[3][2]));
for (i=1; i<=3; i++) a[i][2] /= s;
/* cross j, k to produce i */
a[1][1] = a[2][2]*a[3][3] - a[3][2]*a[2][3];
a[2][1] = a[3][2]*a[1][3] - a[1][2]*a[3][3];
a[3][1] = a[1][2]*a[2][3] - a[2][2]*a[1][3];
}
void dframeinverse( double **E, double **Ein ) /* form inverse frame */
{
double a[6], b[6];
int i, j;
validate_dvector( a, 1, 4);
validate_dvector( b, 1, 4);
for (i=1; i<=3; i++) {
for (j=1; j<=3; j++) {
Ein[i][j] = E[j][i];
}
Ein[4][i] = 0.0;
Ein[i][4] = 0.0;
}
Ein[4][4] = 1.0;
dgetcolumn(E, 4, a, 4);
dmvmult(Ein, 4, 4, a, 4, b);
for (i=1; i<=3; i++) Ein[i][4] = -b[i];
}
void dcross4 ( double *a, double *b, double *c ) /* cross two 4-vectors */
{
double x, y, z;
#ifdef V_CHECK
if ( !valid_d4vector_b( a ) )
nrerror("Invalid vector 1: dcross4\n");
if ( !valid_d4vector_b( b ) )
nrerror("Invalid vector 2: dcross4\n");
if ( !valid_d4vector_b( c ) )
nrerror("Invalid vector 3: dcross4\n");
#endif
x = a[2]*b[3] - a[3]*b[2];
y = a[3]*b[1] - a[1]*b[3];
z = a[1]*b[2] - a[2]*b[1];
c[1] = x;
c[2] = y;
c[3] = z;
c[4] = 0.0;
}
double column_dot( double **G1, int col1, double **G2, int col2 )
/* form vector dot product of two columns (1st 3 elements only) */
{
int i;
double sum;
#ifdef V_CHECK
if ( !valid_dframe( G1 ) )
nrerror("Invalid 1st frame: column_dot\n");
if ( !valid_dframe( G2 ) )
nrerror("Invalid 2nd frame: column_dot\n");
#endif
sum = 0.0;
for ( i=1; i<=3; i++ ) sum += G1[i][col1]*G2[i][col2];
return(sum);
}
void make_d_omega( double **G1, double **G2, double *w)
/* find small rotational difference between two frames G1, G2 */
/* ref: Shear Magic 4A.27 p129 */
{
#ifdef V_CHECK
if ( !valid_dframe( G1 ) )
nrerror("Invalid 1st frame: make_d_omega\n");
if ( !valid_dframe( G2 ) )
nrerror("Invalid 2nd frame: make_d_omega\n");
#endif
w[1] = column_dot( G1, 3, G2, 2 );
w[2] = column_dot( G1, 1, G2, 3 );
w[3] = column_dot( G1, 2, G2, 1 );
w[4] = 0.0;
}
void compare_link_frames( double **G1, double **G2, double *wp, double *wr, double *ww )
{
double wrot[6], z1[6], z2[6], zz[6];
validate_dvector(wrot, 1, 4);
validate_dvector(z1, 1, 4);
validate_dvector(z2, 1, 4);
validate_dvector(zz, 1, 4);
#ifdef V_CHECK
if ( !valid_dframe( G1 ) )
nrerror("Invalid 1st frame: compare_link_frames\n");
if ( !valid_dframe( G2 ) )
nrerror("Invalid 2nd frame: compare_link_frames\n");
#endif
*wp = *wr = *ww = 0.0;
dgetcolumn( G1, Z, z1, 4 ); /* z axis comparison by cross product */
dgetcolumn( G2, Z, z2, 4 );
dcross4( z1, z2, zz );
*wr = dvmag( zz, 3 );
dgetcolumn( G1, U, z1, 4 ); /* origin comparison */
dgetcolumn( G2, U, z2, 4 );
dvsub( z1, 4, z2, zz );
*wp = dvmag( zz, 3 );
/* printf("wp, wr, ww: %8.4lf %8.4lf %8.4lf\n", *wp, *wr, *ww ); */
}
void compare_frames( double **G1, double **G2, double *wp, double *wr, double *ww )
{
double wrot[6], z1[6], z2[6], zz[6];
validate_dvector(wrot, 1, 4);
validate_dvector(z1, 1, 4);
validate_dvector(z2, 1, 4);
validate_dvector(zz, 1, 4);
#ifdef V_CHECK
if ( !valid_dframe( G1 ) )
nrerror("Invalid 1st frame: compare_frames\n");
if ( !valid_dframe( G2 ) )
nrerror("Invalid 2nd frame: compare_frames\n");
#endif
*wp = *wr = *ww = 0.0;
make_d_omega( G1, G2, wrot );
*wr = dvmag( wrot, 3 );
*wp = sqrt( DSQR(G1[X][U] - G2[X][U])
+ DSQR(G1[Y][U] - G2[Y][U])
+ DSQR(G1[Z][U] - G2[Z][U]) );
*ww = sqrt( DSQR(*wr) + DSQR(*wp) );
/* printf("wp, wr, ww: %8.4lf %8.4lf %8.4lf\n", *wp, *wr, *ww ); */
}
/*------------------------------------------------------------*/
void FindAxis(double **T1, double **T2, double *axis,
double *sphi, double *cphi,int *twitching)
{
/* Routine to find the axis of rotation between two frames and the angle between them.
*/
static double **FF;
static int done_once = False;
double ca[6],cb[6],cc[6],cd[6]; /* workspace vectors */
double da[6],db[6],dc[6],dd[6]; /* workspace vectors */
double d1, d2, d3, dmax;
validate_dvector(ca, 1, 4);
validate_dvector(cb, 1, 4);
validate_dvector(cc, 1, 4);
validate_dvector(cd, 1, 4);
validate_dvector(da, 1, 4);
validate_dvector(db, 1, 4);
validate_dvector(dc, 1, 4);
validate_dvector(dd, 1, 4);
if (!done_once) {
FF = dmatrix( 1, 4, 1, 4 );
done_once = True;
}
#ifdef V_CHECK
if ( !valid_dframe( T1 ) )
nrerror("Invalid 1st frame: FindAxis\n");
if ( !valid_dframe( T2 ) )
nrerror("Invalid 2nd frame: FindAxis\n");
if ( !valid_d4vector_b( axis ) )
nrerror("Invalid axis vector: FindAxis\n");
#endif
*twitching = False;
/* Find axis of rotation */
dmsub(T2, 4, 4, T1, FF); /* Difference of transforms */
dgetcolumn(FF, X, ca, 4);
dgetcolumn(FF, Y, cb, 4);
dgetcolumn(FF, Z, cc, 4);
dcross4( ca, cb, da );
dcross4( cb, cc, db );
dcross4( cc, ca, dc );
d1 = dvmnorm( da, 3 );
d2 = dvmnorm( db, 3 );
d3 = dvmnorm( dc, 3 );
if ( d1 < d2 ) {
if ( d2 < d3 ) {
dvcopy( dc, 4, axis );
dmax = d3;
}
else {
dvcopy( db, 4, axis );
dmax = d2;
}
}
else {
if ( d1 < d3 ) {
dvcopy( dc, 4, axis );
dmax = d3;
}
else {
dvcopy( da, 4, axis );
dmax = d1;
}
}
/* printf("dmax = %12.6lf\n", dmax); */
if( dmax < 0.000001 ) { /* there is no rotation, or we have a problem */
d1 = column_dot( T1, X, T2, X);
d2 = column_dot( T1, Y, T2, Y);
d3 = column_dot( T1, Z, T2, Z);
if( d1<0.5 || d2<0.5 || d3<0.5 ) { /* problem */
fprintf( stderr, "FindAxis: Frames opposed to each other\n");
dgetcolumn(T1, Z, axis, 4); /* Set axis to k vector and angle */
*cphi = 1.0; /* to zero. */
*sphi = 0.0;
return;
}
else { /* Orientation change is small */
*twitching = True;
ca[1] = column_dot( T1, 3, T2, 2 );
ca[2] = column_dot( T1, 1, T2, 3 );
ca[3] = column_dot( T1, 2, T2, 1 );
ca[4] = 0.0;
d1 = dvmag( ca, 3 );
if ( d1 > 0.00000000000001 )d1 = dvmnorm( ca, 3 );
printf("Twitch\n");
dvcopy( ca, 4, axis );
*sphi = d1;
*cphi = sqrt(1.0 - d1*d1);
return;
}
}
/* Find angle */
dgetcolumn(T1, X, ca, 4);
dgetcolumn(T1, Y, cb, 4);
dgetcolumn(T2, X, da, 4);
dgetcolumn(T2, Y, db, 4);
if( dvdot(axis, 3, cb) > 0.9) { /* rotation axis is close to j - use */
dcross4( axis, ca, cc ); /* change in i axis to find angle */
dcross4( axis, da, cd );
}
else { /* use */
dcross4( axis, cb, cc ); /* change in j axis to find angle */
dcross4( axis, db, cd );
}
d1 = dvmag( cc, 3 );
d2 = dvmag( cd, 3 );
/* fprintf( stdout, "d1, d2: %11.6lf %11.6lf \n", d1, d2 ); */
if ( d1 == 0.0 && d2 == 0.0 ) {
*cphi = 1.0;
*sphi = 0.0;
}
else {
dvsmy( cc, 3, 1.0/d1, cc );
dvsmy( cd, 3, 1.0/d2, cd ); /* normalize */
*cphi = dvdot(cc, 3, cd); /* cos(phi) given by dot of two vectors */
dcross4( cc, cd, dd );
*sphi = dvmag(dd, 3);
if( dvdot(dd, 3, axis) < 0.0) {
*sphi = -(*sphi);
}
}
return;
}
/* ---------------------------------------------------------------------------- */
/* Functions to rotate vector or frame about an arbitrary axis */
void RotateVector(double *v, double *axis, double sphi, double cphi, double *y)
{
/* v= sin(angle)(axis X v) + Cos(angle)v + (1-Cos(angle))(v . axis) * axis
See Robots for shearing sheep pg 128
Note that v and y can be the same
*/
double db[6],dd[6];
double scal;
validate_dvector( db, 1, 4);
validate_dvector( dd, 1, 4);
scal = (1.0 - cphi) * dvdot(axis, 3, v);
dvsmy( axis, 3, scal, dd );
dcross4( axis, v, db);
dvpiv( db, 3, sphi, dd, dd );
dvpiv( v, 3, cphi, dd, y );
y[4] = 0.0;
}
void RotateFrame(double **T1, double *axis, double sphi, double cphi,
double **T2)
{
/* Routine to rotate coord frame T1 about axis by angle phi to give T2
using quaternion rotation. Note axis, T1 and T2 are all defined in
terms of one (world) coord frame - axis is NOT defined in terms of T1.
It is assumed that T1, and hence T2, are orthogonalized. T1 can be
the same array as T2.
sphi, cphi are sin and cosine of 'phi'.
Peter Kovesi May 1985, adapted to C James Trevelyan July 1994
*/
/* Temporary local data */
double ca[6],cb[6],cc[6],cd[6]; /* workspace vectors */
validate_dvector( ca, 1, 4);
validate_dvector( cb, 1, 4);
validate_dvector( cc, 1, 4);
validate_dvector( cd, 1, 4);
#ifdef V_CHECK
if ( !valid_dframe( T1 ) )
nrerror("Invalid 1st frame: RotateFrame\n");
if ( !valid_dframe( T2 ) )
nrerror("Invalid 2nd frame: RotateFrame\n");
if ( !valid_d4vector_b( axis ) )
nrerror("Invalid axis vector: RotateFrame\n");
#endif
dgetcolumn( T1, X, ca, 4 );
RotateVector(ca, axis, sphi, cphi, cb);
dgetcolumn( T1, Y, ca, 4 );
RotateVector(ca, axis, sphi, cphi, cc);
dcross4( cb, cc, cd); /* T2's k axis */
dputcolumn( cb, 4, T2, X );
dputcolumn( cc, 4, T2, Y );
dputcolumn( cd, 4, T2, Z );
dgetcolumn( T1, U, ca, 4 );
dputcolumn( ca, 4, T2, U );
}