Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
R
ResonanceAnalysis
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Deploy
Releases
Model registry
Analyze
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
PA
Optics
ResonanceAnalysis
Commits
1a9c0a55
Commit
1a9c0a55
authored
3 years ago
by
Lina Hoummi
Browse files
Options
Downloads
Patches
Plain Diff
corrected_resonances_type_Qx_M_in_diagram
parent
c594f0eb
Branches
main
No related tags found
No related merge requests found
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
AT/StabilityDiagram/main.m
+2
-2
2 additions, 2 deletions
AT/StabilityDiagram/main.m
AT/StabilityDiagram/sext_resonances.m
+19
-110
19 additions, 110 deletions
AT/StabilityDiagram/sext_resonances.m
with
21 additions
and
112 deletions
AT/StabilityDiagram/main.m
+
2
−
2
View file @
1a9c0a55
...
...
@@ -6,8 +6,8 @@ delta = 0;
%% Lattice to be analysed
ring
=
atreduce
(
sr
.
model
()
.
ring
);
% ring = rmin;
load
(
'../Lattices/ESRF_standard_cell.mat'
)
ring
=
ARCA
;
% ring = rmin;
%% Sextupolar resonances
if
sext
...
...
This diff is collapsed.
Click to expand it.
AT/StabilityDiagram/sext_resonances.m
+
19
−
110
View file @
1a9c0a55
...
...
@@ -4,20 +4,24 @@ function sext_resonances(ring, Denergy, varargin)
% of sextupolar resonances on the dynamic aperture at a given
% energy deviation.
%
% Foll
w
oing the paper "Nonlinear dynamics with sextupoles in
% Follo
w
ing the paper "Nonlinear dynamics with sextupoles in
% low-emittance light source storage rings", R. Nagaoka, K. Yoshida and
% M. Hara, 1991
%
% Aumented with the inclusion of the energy deviation component.
%
% - Resonances of the type Qx = M to be confirmed
% - To be augmented with the inclusion of the energy deviation component.
% - Higher-order to be included
%
%
% Inputs : - ring, lattice to be analysed, can full or parts
% - Denergy, energy deviation
%
% Optional outputs : - orders, stating the order of sextupole resonance
% required. DEFAULT = linear resonances 1,3.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% if nargin <3
% order = [1;3];
% end
...
...
@@ -52,6 +56,7 @@ betay=beta(:,2);
betax0
=
betax
(
1
);
betay0
=
betay
(
1
);
% Averaged twiss functions to be closer to the thin lens approximation
[
lindata
,
avebeta
,
avemu
,
avedisp
,
nu
,
xsi
]
=
atavedata
(
RING1
,
0
,
1
:
length
(
RING1
)
+
1
);
beta
=
avebeta
;
disp
=
avedisp
;
...
...
@@ -60,6 +65,7 @@ betax=beta(:,1);
betay
=
beta
(:,
2
);
alpha
=
cat
(
1
,
lindata
.
alpha
);
alphax
=
alpha
(:,
1
);
alphay
=
alpha
(:,
2
);
nux
=
muxy
(
length
(
RING1
)
+
1
,
1
)/
2
/
pi
;
nuy
=
muxy
(
length
(
RING1
)
+
1
,
2
)/
2
/
pi
;
phix
=
muxy
(:,
1
);
...
...
@@ -127,8 +133,6 @@ for k=1:N
delta
=
Qx
-
k
/
3
;
xa_l_m
=
delta
/
A3M
(
k
)/
6
*
sqrt
(
betax0
);
%left boundary
xa_r_m
=
-
2
*
xa_l_m
;
%right boundary
if
(
xa_l_m
>
-
b
/
10
^
3
&&
xa_l_m
<
b
/
10
^
3
)
x
(
1
,
1
)
=
xa_l_m
*
10
^
3
;
y
(
1
,
1
)
=
0
;
x
(
1
,
2
)
=
xa_l_m
*
10
^
3
;
y
(
1
,
2
)
=
a
;
...
...
@@ -145,13 +149,12 @@ xa_r_m= -2*xa_l_m; %right boundary
str
=
[
'(3,'
,
num2str
(
k
),
')'
];
text
(
xa_r_m
*
10
^
3
,
a
*
rand
,
str
,
'FontSize'
,
10
,
'FontWeight'
,
'bold'
,
'Color'
,
[
0
,
0
,
0
]);
end
end
%% Resonances of type Qx = M
%% Resonances of type Qx = M
// extracted from CATS
x1st
=
[];
y1st
=
[];
for
k
=
1
:
N
ystep
=
0.0
5
;
ystep
=
0.0
01
;
m3
=
3
*
k
;
if
(
m3
>=
0
&&
m3
<=
N
)
delta
=
Qx
-
k
;
...
...
@@ -206,108 +209,25 @@ for k=1:N
plot
(
x1stN
(
1
,
1
:
ic
-
1
)
*
1000
,
y1stN
(
1
,
1
:
ic
-
1
)
*
1000
,
'Color'
,[
0.8
,
0.1
,
0.1
],
'LineWidth'
,
2.5
);
ResLab
=
[
'[1,'
,
num2str
(
k
),
']'
];
ic1pos
=
round
((
ic1
-
1
+
1
)/
2
)
+
round
((
ic1
-
1
-
1
)/
3.0
*
(
2
*
rand
-
1.0
)/
3.0
);
text
(
x1stN
(
1
,
ic1pos
),
y1stN
(
1
,
ic1pos
),
...
texlabel
(
ResLab
,
'literal'
),
'FontSize'
,
20
,
'FontWeight'
,
'bold'
,
'Color'
,[
0.8
,
0.1
,
0.1
])
text
(
x1stN
(
1
,
ic1pos
)
*
1000
,
y1stN
(
1
,
ic1pos
)
*
1000
,
...
texlabel
(
ResLab
,
'literal'
),
'FontSize'
,
14
,
'FontWeight'
,
'bold'
,
'Color'
,[
0.8
,
0.1
,
0.1
])
end
end
end
Iy
=
y
.^
2
/
2
/
betay0
;
FF
=
alphaM
.*
(
B1M
.
/(
delta
.^
2
))
*
12
^
2
/
2
/
betay0
;
GF
=
lambda
.*
(
B1M
.
/(
delta
.^
2
))
*
6
^
2
/
betay0
;
%F(m,y) = @(m,y) sqrt(1+ FF(m)*y^2);
%xa_r_1(m,y)=@(m,y) -(delta(m)/alphaM(m))'/6*(1+F(m,y))*sqrt(betax0); %left boundary
%xa_l_1(m,y)=@(m,y) +(delta(m)/alphaM(m))/6*(2*F(m,y)-1)*sqrt(betax0); %right boundary
% for k = 1:N+1,
% C = (alphaM(k+N)/2/lambda(k+N)+1)/(GF(k+N));
% test = sqrt(C)-a/1000;
% if (test<0)
% ymin = 0;
% ymax = a/1000;
% else
% ymin = 0;
% ymax = +sqrt(C);
% end
%
% y = linspace(ymin, ymax, 100)*sqrt(betay0);
% F = sqrt(1*ones(1,100)+ FF(k+N)*(y.^2));
% xa_r_1=-(delta(k+N)/alphaM(k+N))/6*(1*ones(1,100)+F)*sqrt(betax0); %left boundary
% xa_l_1= (delta(k+N)/alphaM(k+N))/6*(2*F-1*ones(1,100))*sqrt(betax0); %right boundary
% plot(xa_l_1*1000, y*1000, 'r')
% plot(xa_r_1*1000, y*1000, 'r')
% str = ['[1,',num2str(M(k+N)),']'];
%
% % if (xa_r_1(1)*1000<b)&&(-b<xa_r_1(1)*1000)
% % text(xa_r_1(1)*1000 + 0.15, a/3, str, 'FontSize',10,'FontWeight','bold', 'Color', [1, 0, 0]);
% % end
%
% if (xa_l_1(1)*1000<b)&&(-b<xa_l_1(1)*1000)
% text(xa_l_1(1)*1000 - 0.15, a/3, str, 'FontSize',10,'FontWeight','bold', 'Color', [1, 0, 0]);
% end
% end
%
%
% % for k = 1:N+1,
% % if (FF(k+N)>0)
% % ymin = 0;
% % ymax = a/1000;
% y = linspace(ymin, ymax, 100)*sqrt(betay0);
% F = sqrt(1*ones(1,100)+ FF(k+N)*(y.^2));
% xa_r_1=-(delta(k+N)/alphaM(k+N))/6*(1*ones(1,100)+F)*sqrt(betax0); %left boundary
% xa_l_1= (delta(k+N)/alphaM(k+N))/6*(2*F-1*ones(1,100))*sqrt(betax0); %right boundary
% plot(xa_l_1*1000, y*1000, 'r')
% plot(xa_r_1*1000, y*1000, 'r')
% str = ['[1,',num2str(M(k+N)),']'];
% if (xa_r_1(1)*1000<b)&&(-b<xa_r_1(1)*1000)
% text(xa_r_1(1)*1000 + 0.15, a/3, str, 'FontSize',10,'FontWeight','bold', 'Color', [1, 0, 0]);
% end
%
% if (xa_l_1(1)*1000<b)&&(-b<xa_l_1(1)*1000)
% text(xa_l_1(1)*1000 - 0.15, a/3, str, 'FontSize',10,'FontWeight','bold', 'Color', [1, 0, 0]);
% end
% elseif (FF(k+N)<0)
% ymin = 0;
% ymax = +sqrt(-1/FF(k+N));
% y = linspace(ymin, ymax, 100)*sqrt(betay0);
% F = sqrt(1*ones(1,100)+ FF(k+N)*(y.^2));
% xa_r_1=-(delta(k+N)/alphaM(k+N))/6*(1*ones(1,100)+F)*sqrt(betax0); %left boundary
% xa_l_1= (delta(k+N)/alphaM(k+N))/6*(2*F-1*ones(1,100))*sqrt(betax0); %right boundary
% plot(xa_l_1*1000, y*1000, 'r');
% plot(xa_r_1*1000, y*1000, 'r');
% str = ['[1,',num2str(M(k+N)),']'];
%
% if (xa_r_1(1)*1000<b)&&(-b<xa_r_1(1)*1000)
% text(xa_r_1(1)*1000 + 0.15, a/3, str, 'FontSize',10,'FontWeight','bold', 'Color', [1, 0, 0]);
% end
%
% if (xa_l_1(1)*1000<b)&&(-b<xa_l_1(1)*1000)
% text(xa_l_1(1)*1000 - 0.15, a/3, str, 'FontSize',10,'FontWeight','bold', 'Color', [1, 0, 0]);
% end
% end
% end
%
%% Fichiers de sortie
%% Output files
fid
=
fopen
(
'resonances_sextupoles_out.txt'
,
'w'
);
%ouvre un fichier ou le creer
%�crit dans ce fichier, fid est sa reference pour matlab
fprintf
(
fid
,
'%s\n'
,
'Betatron tune (Qx, Qy)'
);
fprintf
(
fid
,
'%i\t %i%i\n'
,
Qx
);
fprintf
(
fid
,
'%i\n\n'
,
Qy
);
fprintf
(
fid
,
'%s\n'
,
'Initial Twiss and dispersion alphax betax alphay betay disp0 disp0p'
);
fprintf
(
fid
,
'%i\t %i\t %i\t %i\n'
,
alphax
(
1
),
betax0
,
alpha
(
2
,
1
),
betay0
);
fprintf
(
fid
,
'%i\t %i\t %i\t %i\n'
,
alphax
(
1
),
betax0
,
alpha
y
(
1
),
betay0
);
fprintf
(
fid
,
'%i\t %i\n\n'
,
disp
(
1
,
1
),
disp
(
2
,
1
));
fprintf
(
fid
,
'%s\n'
,
'Nonlinear magnets list'
);
fprintf
(
fid
,
'%s\n'
,
'Sextupoles'
);
fprintf
(
fid
,
'%s\n'
,
'Index Phix/2pi Phiy/2pi SK SKB s/R'
);
for
k
=
1
:
n_sext
...
...
@@ -315,17 +235,6 @@ SK = betax(indice(k))^(3/2)*k2l(k);
SKB
=
betax
(
indice
(
k
))
^
(
1
/
2
)
*
betay
(
indice
(
k
))
*
k2l
(
k
);
fprintf
(
fid
,
'%i\t %i\t %i\t %i\t %i\t %i\n\n'
,
3
,
phix
(
indice
(
k
)),
phiy
(
indice
(
k
)),
SK
,
SKB
,
s
(
indice
(
k
))/
R
);
end
%
% fprintf(fid,'%s\n','Octupoles');
% fprintf(fid,'%s\n','Index Phix/2pi Phiy/2pi TX TY TB s/R');
% for k=1:n_oct,
% TX = betax(indice_oct(k))^(2)*k3l(indice_oct(k));
% TY = betay(indice_oct(k))^(2)*k3l(indice_oct(k));
% TB = betax(indice_oct(k))*betay(indice_oct(k))*k3l(indice_oct(k));
% fprintf(fid,'%i\t %i\t %i\t %i\t %i\t %i\t %i\n\n', 4, phix(indice_oct(k)), phiy(indice_oct(k)), TX, TY, TB, s(indice_oct(k))/R);
% end
%n'oublie pas de fermer le fichier sinon tu ne peux pas le lire
fclose
(
fid
)
save
'test.txt'
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment