DSDataSocket

DeviceServer User’s Guide

Version courante du document : 1.0

Derniére modification le 29/11/2004

Historique des modifications

Date Revision | Description Author

18/07/03 1.0 Initial Version A. Buteau

1 Main functionnalities Of DeVICESEIVErcccrrccrrrsrmrssrrsserrssee s ssse s s s s e s sssesssees
1.1 Gateway between Tango and LabView ...
1.2 KEY dESIGN ISSUEciiiiiiiie ettt e e e e e e e e et e e e e e e e e e eneaanaans
1.3 Quick description of DataSocket protoColoooiiiiiiiiiiiii e
1.4 Sharing a Labview variable ...
2 An unforecast usage : gateway with OPC worldccccvemiimiinnncnssnnsnssssssssannns
3 Software ArchiteCture..........cocviiiininir
3.1 The three components of a DataSocket based applicationc.ccooeeeeeii.
3.2 Design considerationooooiiiiiiiiiiiiii e
3.2.1 Threading ProbIEMSo e e e e eeaes
3.2.2 Synchronous vs ASyNChronouUS MOGE..........couiiiiiiiiiiiiiiiie e
4 Current KNown limitations.........cccoicciiicccciri st
4.1 Start to end status of CoONNECIONS............uiiiiiiii
4.2 Bad Name fOr URLcooiieee et a e
5 =Y {0 g P T Lo - S S
51 Array exchange of 10000 dOUDIEScoeiiiiiiiiiiiiiiee e
5.2 Exchange of many SCalars..............ooovvviiiiiiiiiiiiiieeeeeeeee e
6 ST 1= TR LT T o
6.1 Installation of CVI RUNLIME ..o e

6.2

Installation of National DataSocket Server ...,

1.1

Main functionnalities of DeviceServer

Gateway between Tango and LabView

The purpose of this “Tango DataSocket DeviceServer” is to exchange Data between TANGO
and a LabView application. It acts as a gateway whose only purpose is to get and set values
which are available in a Labview Application from the TANGO world. On the following
“Tango architecture diagram” , we see that the Labview application appears at the same level
that a piece of hardware which is driven by it’s Tango DeviceServer.

As this “Tango DataSocket DeviceServer” doesn’t have any knowledge of the Labview
application it is communicating with, other Tango Devices should be written that represent the
Labview application Devices in the Tango world (as it is show on the diagram with the Linac
Gun Device)

Important note : This DeviceServer is has nothing to do with the Labview binding !! The
“Tango Labview binding” purpose is to allow a Labview application to access data from the
Tango world. So, it’s working on the client side, and not at the server side as this “7Tango
DataSocket DeviceServer”.

Tango « high level » applications

1.2

C Archivage

| Bus Logiciel TANGO |

Tango
DataSocket
Device Server

Protocole
DataSocket

(moteur...)

Labview application

Key design issue

On key design consideration of this DeviceServer was to make this data exchange with no or
very few developments on the LabView side. That’s what motivated the choice of the
DataSocket protocol as the technical basis of this development. In SOLEIL’s case, this “Tango
DataSocket DeviceServer” will be use to communicate with an application developped by a
third party firm to control the LINAC.

Bindings

1.3

14

2.1

2.2

Quick description of DataSocket protocol

DataSocket is a proprietary protocol developped by National Instrument to exchange data
between their software tools Labview, Labwindows, Measurement Studio,etc . A more
detailed presentation is available at http:/www.ni.com/pdf/wp/wp1680.pdf .

The exchanged data may be of different kinds : scalars, arrays and even structures.

Sharing a Labview variable

To share a variable of the Labview application in the DataSocket world, the only thing to do is
to right click on it in Labview and to define it as “published” for data that must be read from
the outside, and “subscribed * for a data that must be written from the outside world

it=! Connexion DataSocket x|

Connecker &

I-:Istp:,l',l'lu:ucalhu:-st,l'numerique_l Parcourir, ., |

Type de connesxion
7 Activé

" Souscrire Seules les connexions activées peuvent
publier etfou souscrire des données
quand le ¥I s'exécute,

£ publier et souscrire

Zhanger | SUppKirmEr | annuler |

An unforecast usage : gateway with OPC world

Communication scheme

The CVI library is able to read/write a value available in a OPC server with the same set of
functions than necessary to get values from a DataSocket Server.

Therefore the Tango DataSocket DeviceServer” may access data in an OPC server, only by
giving an URL which is OPC compatible.

For instance, we can access the following OPC item (which is produced by an OPC demo
application given by National Instrument) just by calling the ReadDouble command on the
Tango DataSocket DeviceServer with the following URL.

opc://localhost/National Instruments.OPCDemo/sine:0.0..8.0:3.0

OPC naming issues

Basically an OPC variable is accessible with an URL done with the following fields:

URL field Comment

Opc:: Tells the Datasocket server that variable is
accessed through the OPC protocol (rather
that http or DataSocket protocol)

2.3

locahost or britten.synchrotron-soleil. fr Name of the remote computer on which the
OPC server runs

National Instruments.OPCDemo Name of the OPC server
Or
Fortetion.OPCSimulation

Areal.Simulate.Sine Wave Item Name which must be read/write on the
OPC server. Its may contain special caracters
as . or space.

Remarks :

» The group name (an OPC concepts) is a client side notion. It allows you to arrange items
in generic OPC browsers, but it should be use in the URL name (as a server is not aware
of this group name)

» Some OPC server are not browseable: therefore the list of their items cannot be seen from
an OPC browser. To consult these variables, the exact items names must be known

» A DataSocket Server must be started on the computer running the TangoDeviceServer

Troubleshooting OPC Interface Problems

The OPC specification is rather loose and is often interpreted differently by different parties.
Due to encapsulation of the technology and lack of troubleshooting tools, OPC issues are
extremely time consuming. It is typical that a failure is reproducible only with a particular
client/server combination. The same client works with other servers and the same server
works with other clients.

The following National Instrument document
http://zone.ni.com/devzone/conceptd.nsf/webmain/401 CB3A4E216356286256BC7004B5831
?opendocument#3 gives some ideas to investigate.

A good OPC client browser is the National Instruments Server Explorer available on
http://www.ni.com

3

3.1

3.2

321

322

Software Architecture

The three components of a DataSocket based application

To establish a DataSocket based communication between 2 applications, a third component is
mandatory : “the DataSocket Server”. It is an standard executable given by National
Instrument which act as a relay between both applications. In our case, the 3 following
executables are mandatory

Server

Tango (: gatflsoc:(et
DataSocket ationa

Server Instrument

Notes :
e The DataSocket Server executable must be started to make data exchange possible. If
it crashes, communication is broken between TANGO and LabVIEW.
Design consideration

Threading problems

One major problem during the development phase was that the thread which calls the CVI
function DS_Open should not be killed in any case (otherwise the threads forked by this
DS_Open call becomes zombies).

This behaviour is incompatible with the normal thread management of OmniORB, which
spawns a thread for each new client and kills it after some inactivity time.

A dedicated and permanent thread is therefore created at startup of Device, which is in charge
of opening and closing DataSocket handles.

The usual TANGO threads communicate with this so called "CVI thread” through a
synchronisation Object called SharedData. Synchronisation of activity between these 2
threads is accomplished through Condition variables

Synchronous vs Asynchronous mode
The CVI DataSocket library proposes to work in following modes:

e Asynchronous : when the data changes in the Labview application, the client side (in our
cas the Tango side) is wake up and signaled that a new value is available.

e Synchronous: to get a fresh data from LabView, a call to the DS Update function must
be explicitly done on the Tango side.

A this DeviceServer acts only as the gateway, and is not the final client of the data produced
by the Labview application (the final client are other Tango Devices) , the asynchronous mode
does not appear very interesting, because asynchronous should be also be done till final client
and nowadays no Tango mechanisms allows it .

A possible extension (if performances justify it but which is not not forecast for now) would
be to make the Tango DataSocket DeviceServer :

e Open Datasocket when requested by other Tango Devices

4.1

4.2

5.1

5.2

6.1

6.2

e Use CVI asynchronism to “subscribe” to values changes on the LabView side
e Internally cache updated values

e Give other Tango Devices cached value

Current known limitations

Start to end status of connections

It is impossible with the CVI DataSocket functions to have the real status of connection if the
final Labview Application is down (it sounds crazy but it’s true: after a discussion with NI , it
could be an interesting feature in the next version ...). It means, that as long as the National
DataSocket Server runs, it is possible to obtain datasocket data even if no Labview application
is producing them anymore.

To face with this problem, a heartbeat variable (which is always increasing) must be
implemented in the Labview application. It’s then up to the TangoDeviceServer to monitor
this heartbeat variable and declare the Labview application broken if the variable is no more
increasing.

Bad name for URL

It’s impossible for the “Tango DataSocket DeviceServer” to detect that a bad URL name has
been given as a argin, as the National DataSocket Server accept connection to non existing
URL and even returns a value for scalars for such non existing URL!!

Performances

I don’t have realistic LabView application to make performances measurements. Nevertheless,
here are the figures I could get with my small test applications.

Hardware setup : 2 PC under WIN2000 PIIl ~1GHz , on a 100 Mbit/s switched network and
no CPU Activity

Array exchange of 10000 doubles

30 millisecondes for the execution of the method :

Tango: :DevVarDoubleArray
DSDataSocket::read double array(Tango::DevString argin)

Exchange of many scalars

Not done because I lacked a Labview application producing so many variables

Software Setup

Installation of CVI Runtime

CVI requires a Run Time to be installed on the computer running the “Tango DataSocket
DeviceServer”. This RunTime can be found here : A CVI Run Time is available in the script
directory of the Device.

Installation of National DataSocket Server

The Setup is available here at SOLEIL.
Linac\ThreadDSDataSocket\Install Runtime Labwindows\setup.exe

