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All the tracking results in this talk are obtained using mbtrack2 [1]:

> Multi-bunch python tracking code using 10* — 10> macro-particules per bunch in parallel.

» Using the CavityResonator class allows to simulate active/passive RF cavities with beam loading.

» The implementation of this class is very similar to what can be found in the SOLEIL/KEK mbtrack
version [2].

» Open source: https://gitlab.synchrotron-soleil.fr/PA/collective-effects/mbtrack?2
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The analytic calculations of the bunch profile are obtained by | -

solving an equation system similar to a Haissinski equation [3].
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[1] A. Gamelin, W. Foosang, and R. Nagaoka, “mbtrack2, a Collective Effect Library in Python”, IPAC'21 MOPABQ70.

[2] N. Yamamoto, A. Gamelin, and R. Nagaoka, "Investigationof Longitudinal Beam Dynamics With Harmonic Cavities by Using the Code mbtrack" IPAC’19
MOPGWO039

[3] A. Gamelin and N. Yamamoto, “Equilibrium Bunch Density Distribution With Multiple Active and Passive RF Cavities”, IPAC'21 MOPABO69.  yxxxxx 2
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The parameters used for the simulations shown here are:

RF parameters: SOLEIL Upgrade CDR (v0313):
Main cavity (4 ESRF-EBS type): e h=416
e m=1 « L =2354,73m
: IQ?S = éi%é\:f)ﬂ « Ey=275GeV
) Qi ; 000 * €x/€,=52pm.rad

* Vy /vy, =0,2/0,2
. Tx/’l,'y =9,2/9,3ms
e 7,=11,3ms

® VRF = 1,7 MV

Passive harmonic cavity (2 Super3HC type): « a.,=912x107°

e m=3 ° Oy = 8 ps

« R,=90x10%Q « o5s=9x107*

* Qo =Q,=10° « U, =515 keV (w/o IDs)

= No feedback of any sort for the both main and harmonic cavities.

= Main cavity is set to a given tunning (usual close to the optimal tunning point) and the generator voltage is
computed to get the design voltage and phase.

= For the passive harmonic cavity, the tunning is the only knob to adjust the voltage. XXXXXXX 3
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Scanning of the HC tunning with MC voltage and phase fixed:
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Beam dynamics with a 39 harmonic cavity
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As expected with a SC passive HC, it is only

Vtot
dt 2
As it is not possible to reach plat potential

d*Viot
=—5 = 0), the bunch

profile is asymmetric.

Here the first tunning past the flat
potential (i.e. with a positive slope) still
gives a stable beam without double bump
profile.

Then, when the positive slope is more
important, the double bump regime starts
to appear.

Push past the double bump regime, a fast
loss of all bunches is observed (oscillations
of bunch profile with a mix of modes
m=0,1,2... and dipole coupled bunch
motion |=0)

possible to cancel % and not —=£
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Beam dynamics with a 3'@ harmonic cavity
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In the Piwinski lifetime formula, the lifetime 7 is proportional to [ p?(z)dz. So the lifetime increase one can expect from
the bunch lengthening is proportional to [1] :

. 2
Assuming: . [ pé (z)dz «— w/oHC
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[1]warnock, R., & Venturini, M. Equilibrium of an arbitrary bunch train in presence of a passive harmonic cavity: Solution through coupled Haissinski equations.



SWLEIL Lifetime increase with a 3@ harmonic cavity
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In the Piwinski lifetime formula, the lifetime 1 is proportional to f p?(2)dz. So the lifetime increase one can expect from
the bunch lengthening is proportional to [1] :

. 2
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[1]warnock, R., & Venturini, M. Equilibrium of an arbitrary bunch train in presence of a passive harmonic cavity: Solution through coupled Haissinski equations.
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SWLEIL Impact of non-uniformities of the beam filling pattern

In today SOLEIL, the “uniform” filling pattern is injected by steps of 104 bunches (% of the full filling). Due to the
transmission from the booster, there is some variation of the current per bunch depending on the bunch index as shown
in the measured filling pattern taken during an operation run:

Using this filling pattern as input in the simulation, for an HC set near the

r\;—”\ [\,.--""\ \.-w-f\ flat potential, we get strong variation of the phase and bunch length versus
12 M bunch index:
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Impact of gaps in the beam filling pattern

We will also need the possibility to have a small gap during user mode if needed to clear the ions.
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Now let us have a look at the longitudinal coupled-bunch instability (LCBI) driven by the HOM of the main cavity and
how the harmonic cavity may impact this instability.

HOM Instability Threshold

The HOM instability is well explained —— Threshold SOLEIL Upgrade @ 500 mA & 1.7 MV - 4 cavities - w/o IDs

. Threshold SOLEIL Upgrade @ 500 mA & 1.7 MV - 4 cavities - w/ IDs
by the LCBI theory: 80  HOMs w/ small damper

- —— HOMs w/o small damper/tuner/lonPomp
;1 . 4,,1“:’ {Z(o“ , Re[/((z)ﬂ ")] Z(oﬂ . Rc[/((uﬂ ,)]} ---- HOMs w/o small damper w/ tuner/lonPomp
60

={nM +(u+v,)}o,

,u n

c
Where the HOM impedance is = 40
described by the resonator model:
20
Z(w)= R . )
‘“‘-”L(z‘a] o A k
0.5 1.0 1.5 2.0 2.5 3.0
f [GHz]
When the coupled bunch mode frequency coincide with the HOM frequency (w, , = w,), corresponding to the
strongest instability growth rate, the formula simplify to:
; 'e o Rip = i B o 1 XXXXXXX 12
(P IO Wo w




SOLEIL HOM Instabillity
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Now let us have a look at the longitudinal coupled-bunch instability (LCBI) driven by the HOM of the main cavity and
how the harmonic cavity may impact this instability.

HOM Instability Threshold

The HOM instability is well explained —— Threshold SOLEIL Upgrade @ 500 mA & 1.7 MV - 4 cavities - w/o IDs
by the LCBI theory: 80 Threshold SOLEIL Upgrade @ 500 mA & 1.7 MV - 4 cavities - w/ IDs
—— HOMs w/ small damper
- —— HOMs w/o small damper/tuner/lonPomp
: . : 1*0 {Z( D Re[/((z)u ")] Z(oﬂ . Rc[/((uﬂ ,,)]} ---- HOMs w/o small damper w/ tuner/lonPomp
’ LV, | n=0 n=1
: 60

_ {HM +(+v )} / With IDs the damping time gets smaller

,u n o
Where the HOM impedance is « 40 HOM @ 1,7 GHz is the most problematic
described by the resonator model: Rs =4 %3670 ~ 14,6 kQ
20
Z(w)= R i
0 -2 | J\
W o, 0
0.5 1.0 1.5 2.0 2.5 3.0
f [GHz]
When the coupled bunch mode frequency coincide with the HOM frequency (w, , = w,), corresponding to the
tron . . L :
strongest instability growth rate, the formula simplify to _ 4m E w, 1
Rth — T. I w w XXXXXXX 13
sUc 1o Wo




SOLEIL HOM Instability — Q dependance
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Outside of the resonance, the threshold is strongly dependent on the Q of the HOM.
So as Qyom = 2487, it may give us some margin compared to the asymptotic constant case.
But to prepare for the worst, we still consider that resonance case.

100 — Q=0nom=2487

— Q@=1000

— Q@=15000

--- asymptotic formula (no Q)
I fHOM

80
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<>

60 -
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344 + v)

40 -

20 4

1.7005 1.7010 1.7015 1.7020 1.7025 XXXXXXX 14
fHom[GHZ]
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HOM Instability — Tracking

Tracking results agree well with both formulas (LCBI and asymptotic): Case: R, =14,6 kQ — Q=100
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. . rd . . . . . .
Now including the 3™ harmonic cavity with a HOM setting which was stable without the HC. Case: R, = 10 kQ
Scanning the tunning of the HC from 10 000 kHz to 83 kHz : Q = 100
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HOM Stability Diagram for SOLEIL Upgrade
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HOM Stability Diagram for SOLEIL Upgrade
L N o o @ @
14 4
Unstable ®
12 T . -
10 4
¢ s
5
ec
6 No instability
® ® ®
4] Landau
—— Threshold w/ HC (assymptotic formula)
2 Threshold w/o HC (assymptotic formula)
@ Tracking : stable
@® Tracking : unstable

Diagram

200 400 600 800 1000 1200 1400 1600
f[Hz]

XXXXXX

18



SOULEIL Landau damping of HOM instability
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The effect of the Landau damping is quite clearly shown here as the suppression of the Case: R, = 7,5 kQ
. )
instability by the tune spread induced by the HC for the last step of the scan. Q =100
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 The shunt impedance of HOM at 1,7 GHz in ESRF type cavities is about
3,6 kQ per cavity (4 cavities In total).

« Without HC, the threshold is between 12 kQ) and 13 kQ. So at least 3 or 4
cavities needs to be at the resonance to trigger this instabillity.

« Qutside the resonance, the Q of this HOM Iincreases rather quickly the
threshold.

« With the HC tuned in, the threshold is reduced is between 5 k) and 7,5 k(.
So, two cavities at the resonance could trigger this instability (or even one
cavity if the shunt impedance is much bigger than simulated).

« The probability of triggering this instability should be investigated by Monte
Carlo simulations considering an error model of the HOMSs.

« We are still considering different mitigation strategies to cure this instability
If needed (longitudinal feedback, temperature tuning, ...).
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 The RF system with NC MC and SC passive 3rd HC seems to provide the
needed bunch lengthening and lifetime for SOLEIL Upgrade (from very low
currents ~20/30 mA).

« But it is quite sensible to beam loading. To keep good performances, we will

need a gap smaller than 10 bunches and to decrease bunch to bunch
current variations.

« HOM Instability:

1. the APS-U staff (discussion w/ L. Emery and R. Lindberg at last IPAC) is also
expecting to see an increase of the growth rate by a factor 2 or 3 due to the HC. They
have designed a longitudinal feedback specifically to deal with this issue.

2. Factor 2 increase in growth rate expected in ALS-U (talk of M. Venturini at IPAC)
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