diff --git a/tracy/tracy/src/t2elem.cc b/tracy/tracy/src/t2elem.cc
index 6aadc6705f852092ef57d950fa2a9396bbd90565..c38f5ca20b0e831d29470b65670dba51bedbee9d 100644
--- a/tracy/tracy/src/t2elem.cc
+++ b/tracy/tracy/src/t2elem.cc
@@ -11,7 +11,7 @@
 double c_1, d_1, c_2, d_2, cl_rad, q_fluct;
 double I2, I4, I5, dcurly_H, dI4;
 ElemFamType ElemFam[Elem_nFamMax];
-CellType Cell[Cell_nLocMax + 1];
+CellType      Cell[Cell_nLocMax+1];
 
 // for IBS
 int i_, j_;
@@ -26,24 +26,23 @@ double **C_;
  Purpose:
  Global to local coordinates
 
- ****************************************************************************/
+****************************************************************************/
 template<typename T>
-void GtoL(ss_vect<T> &X, Vector2 &S, Vector2 &R, const double c0,
-        const double c1, const double s1) {
+void GtoL(ss_vect<T> &X, Vector2 &S, Vector2 &R,
+	  const double c0, const double c1, const double s1)
+{
     ss_vect<T> x1;
 
     /* Simplified rotated p_rot */
-    X[px_] += c1;
-    X[3] += s1;
+  X[px_] += c1; X[3] += s1;
     /* Translate */
-    X[x_] -= S[X_];
-    X[y_] -= S[Y_];
+  X[x_] -= S[X_]; X[y_] -= S[Y_];
     /* Rotate */
     x1 = X;
-    X[x_] = R[X_] * x1[x_] + R[Y_] * x1[y_];
-    X[px_] = R[X_] * x1[px_] + R[Y_] * x1[py_];
-    X[y_] = -R[Y_] * x1[x_] + R[X_] * x1[y_];
-    X[py_] = -R[Y_] * x1[px_] + R[X_] * x1[py_];
+  X[x_]  =  R[X_]*x1[x_]  + R[Y_]*x1[y_];
+  X[px_] =  R[X_]*x1[px_] + R[Y_]*x1[py_];
+  X[y_]  = -R[Y_]*x1[x_]  + R[X_]*x1[y_];
+  X[py_] = -R[Y_]*x1[px_] + R[X_]*x1[py_] ;
     /* Simplified p_rot */
     X[px_] -= c0;
 }
@@ -55,20 +54,21 @@ void GtoL(ss_vect<T> &X, Vector2 &S, Vector2 &R, const double c0,
  Purpose:
  Local to global coordinates
 
- ****************************************************************************/
+****************************************************************************/
 template<typename T>
-void LtoG(ss_vect<T> &X, Vector2 &S, Vector2 &R, double c0, double c1,
-        double s1) {
+void LtoG(ss_vect<T> &X, Vector2 &S, Vector2 &R,
+	  double c0, double c1, double s1)
+{
     ss_vect<T> x1;
 
     /* Simplified p_rot */
     X[px_] -= c0;
     /* Rotate */
     x1 = X;
-    X[x_] = R[X_] * x1[x_] - R[Y_] * x1[y_];
-    X[px_] = R[X_] * x1[px_] - R[Y_] * x1[py_];
-    X[y_] = R[Y_] * x1[x_] + R[X_] * x1[y_];
-    X[py_] = R[Y_] * x1[px_] + R[X_] * x1[py_];
+  X[x_]  = R[X_]*x1[x_]  - R[Y_]*x1[y_];
+  X[px_] = R[X_]*x1[px_] - R[Y_]*x1[py_];
+  X[y_]  = R[Y_]*x1[x_]  + R[X_]*x1[y_];
+  X[py_] = R[Y_]*x1[px_] + R[X_]*x1[py_];
     /* Translate */
     X[x_] += S[X_];
     X[y_] += S[Y_];
@@ -81,16 +81,17 @@ void LtoG(ss_vect<T> &X, Vector2 &S, Vector2 &R, double c0, double c1,
 
  Purpose:
  Get the longitudinal momentum ps
- **********************************************************/
+**********************************************************/
 
 template<typename T>
-inline T get_p_s(ss_vect<T> &x) {
+inline T get_p_s(ss_vect<T> &x)
+{
     T p_s, p_s2;
 
     if (!globval.H_exact)
-        p_s = 1.0 + x[delta_];
+    p_s = 1.0+x[delta_];
     else {
-        p_s2 = sqr(1.0 + x[delta_]) - sqr(x[px_]) - sqr(x[py_]);
+    p_s2 = sqr(1.0+x[delta_]) - sqr(x[px_]) - sqr(x[py_]);
         if (p_s2 >= 0.0)
             p_s = sqrt(p_s2);
         else {
@@ -100,7 +101,7 @@ inline T get_p_s(ss_vect<T> &x) {
             exit_(1);
         }
     }
-    return (p_s);
+  return(p_s);
 }
 
 /****************************************************************************/
@@ -111,9 +112,10 @@ inline T get_p_s(ss_vect<T> &x) {
 
  If H_exact = false, using approximation Hamiltonian:
 
- px^2+py^2
- H(x,y,l,px,py,delta) = -------------
- 2(1+delta)
+                                   px^2+py^2
+	      H(x,y,l,px,py,delta) = -------------
+	                               2(1+delta)     
+       
 
  Otherwise, using exact Hamiltonian
 
@@ -135,16 +137,17 @@ inline T get_p_s(ss_vect<T> &x) {
 
  ****************************************************************************/
 
+
 template<typename T>
 void Drift(double L, ss_vect<T> &x) {
     T u;
 
     if (!globval.H_exact) {
-        u = L / (1.0 + x[delta_]);
-        x[ct_] += u * (sqr(x[px_]) + sqr(x[py_])) / (2.0 * (1.0 + x[delta_]));
+    u = L/(1.0+x[delta_]);
+    x[ct_] += u*(sqr(x[px_])+sqr(x[py_]))/(2.0*(1.0+x[delta_]));
     } else {
-        u = L / get_p_s(x);
-        x[ct_] += u * (1.0 + x[delta_]) - L;
+    u = L/get_p_s(x);
+    x[ct_] += u*(1.0+x[delta_]) - L;
     }
     x[x_] += x[px_] * u;
     x[y_] += x[py_] * u;
@@ -617,36 +620,36 @@ static double get_psi(double irho, double phi, double gap) {
 /* template<typename T>
  void thin_kick(int Order, double MB[], double L, double h_bend, double h_ref,ss_vect<T> &x)
 
- Purpose:
- Calculate multipole kick. The Hamiltonian is
+  Purpose:
+        Calculate multipole kick. The Hamiltonian is
 
- H = A + B where A and B are the kick part defined by
- 2    2
- px + py
- A(x,y,-l,px,py,dP) = ---------
- 2(1+dP)
- 2 2
- B(x,y,-l,px,py,dP) = -h*x*dP + 0.5 h x + int(Re(By+iBx)/Brho)
+            H = A + B where A and B are the kick part defined by
+                                         2    2
+                                       px + py
+                 A(x,y,-l,px,py,dP) = ---------
+                                       2(1+dP)
+                                                   2 2
+                 B(x,y,-l,px,py,dP) = -h*x*dP + 0.5 h x + int(Re(By+iBx)/Brho)
 
- so this is the appproximation for large ring
- the chromatic term is missing hx*A
+                 so this is the appproximation for large ring
+                 the chromatic term is missing hx*A
 
 
- The kick is given by
+		The kick is given by
 
- e L       L delta    L x              e L
- Dp_x = - --- B_y + ------- - ----- ,    Dp_y = --- B_x
- p_0         rho     rho^2             p_0
+              e L       L delta    L x              e L
+     Dp_x = - --- B_y + ------- - ----- ,    Dp_y = --- B_x
+              p_0         rho     rho^2             p_0
 
- where
- e      1
- --- = -----
- p_0   B rho
- ====
- \
- (B_y + iB_x) = B rho  >   (ia_n  + b_n ) (x + iy)^n-1
- /
- ====
+    where
+        e      1
+      --- = -----
+      p_0   B rho   
+                           ====
+                           \ 
+      (B_y + iB_x) = B rho  >   (ia_n  + b_n ) (x + iy)^n-1
+                           /
+                           ====
 
  Input:
  Order  maximum non zero multipole component
@@ -718,13 +721,13 @@ void thin_kick(int Order, double MB[], double L, double h_bend, double h_ref,
  Compute edge focusing for a dipole
  There is no radiation coming from the edge
  The standard formula used is :
- irho
- px = px0 + ------ tan(phi) *x0
- 1 + dP
+                   irho
+       px = px0 + ------ tan(phi) *x0
+                  1 + dP
 
- irho
- pz = pz0 - ------ tan(phi - psi) *z0
- 1 + dP
+                   irho
+       pz = pz0 - ------ tan(phi - psi) *z0
+                  1 + dP
 
  for psi definition  see its function
 
@@ -819,28 +822,29 @@ void bend_fringe(double hb, ss_vect<T> &x) {
  form. If keep up to the 4-th order nonlinear terms, the formula with goes to the
  following:
  (see E. Forest's book (Beam Dynamics: A New Attitude and Framework), p390):
- b2
- x = x0 +/- ---------- (x0^3 + 3*z0^2*x0)
- 12(1 + dP)
+                     b2
+       x = x0 +/- ---------- (x0^3 + 3*z0^2*x0)
+                  12(1 + dP)
 
- b2
- px = px0 +/-  ---------- (2*x0*y0*py0 - x0^2*px0 - y0^2*py0)
- 4(1 + dP)
+                         b2
+       px = px0 +/-  ---------- (2*x0*y0*py0 - x0^2*px0 - y0^2*py0)
+                     4(1 + dP)
 
- b2
- y = y0 -/+ ---------- (y0^3 + 3*x0^2*y0)
- 12(1 + dP)
+                      b2
+       y = y0 -/+ ---------- (y0^3 + 3*x0^2*y0)
+                  12(1 + dP)
 
- b2
- py = py0 -/+  ---------- (2*x0*y0*px0 - y0^2*py0 - x0^2*py0)
- 4(1 + dP)
+                        b2
+       py = py0 -/+  ---------- (2*x0*y0*px0 - y0^2*py0 - x0^2*py0)
+                     4(1 + dP)
 
- dP = dP0;
+       dP = dP0;
+       
 
+                          b2
+       tau = tau0 -/+ ----------- (y0^3*px - x0^3*py + 3*x0^2*y*py - 3*y0^2*x0*px)
+                      12(1 + dP)^2
 
- b2
- tau = tau0 -/+ ----------- (y0^3*px - x0^3*py + 3*x0^2*y*py - 3*y0^2*x0*px)
- 12(1 + dP)^2
 
  Input:
  b2       = quadrupole strength
@@ -1862,22 +1866,10 @@ void GtoL_M(Matrix &X, Vector2 &T) {
     Matrix R;
 
     /* Rotate */
-    R[0][0] = T[0];
-    R[0][1] = 0.0;
-    R[0][2] = T[1];
-    R[0][3] = 0.0;
-    R[1][0] = 0.0;
-    R[1][1] = T[0];
-    R[1][2] = 0.0;
-    R[1][3] = T[1];
-    R[2][0] = -T[1];
-    R[2][1] = 0.0;
-    R[2][2] = T[0];
-    R[2][3] = 0.0;
-    R[3][0] = 0.0;
-    R[3][1] = -T[1];
-    R[3][2] = 0.0;
-    R[3][3] = T[0];
+  R[0][0] = T[0];  R[0][1] = 0.0;   R[0][2] = T[1]; R[0][3] = 0.0;
+  R[1][0] = 0.0;   R[1][1] = T[0];  R[1][2] = 0.0;  R[1][3] = T[1];
+  R[2][0] = -T[1]; R[2][1] = 0.0;   R[2][2] = T[0]; R[2][3] = 0.0;
+  R[3][0] = 0.0;   R[3][1] = -T[1]; R[3][2] = 0.0;  R[3][3] = T[0];
     MulLMat(4L, R, X);
 }
 
@@ -1885,22 +1877,10 @@ void LtoG_M(Matrix &X, Vector2 &T) {
     Matrix R;
 
     /* Rotate */
-    R[0][0] = T[0];
-    R[0][1] = 0.0;
-    R[0][2] = -T[1];
-    R[0][3] = 0.0;
-    R[1][0] = 0.0;
-    R[1][1] = T[0];
-    R[1][2] = 0.0;
-    R[1][3] = -T[1];
-    R[2][0] = T[1];
-    R[2][1] = 0.0;
-    R[2][2] = T[0];
-    R[2][3] = 0.0;
-    R[3][0] = 0.0;
-    R[3][1] = T[1];
-    R[3][2] = 0.0;
-    R[3][3] = T[0];
+  R[0][0] = T[0]; R[0][1] = 0.0;  R[0][2] = -T[1]; R[0][3] = 0.0;
+  R[1][0] = 0.0;  R[1][1] = T[0]; R[1][2] = 0.0;   R[1][3] = -T[1];
+  R[2][0] = T[1]; R[2][1] = 0.0;  R[2][2] = T[0];  R[2][3] = 0.0;
+  R[3][0] = 0.0;  R[3][1] = T[1]; R[3][2] = 0.0;   R[3][3] = T[0];
     MulLMat(4, R, X);
 }
 
@@ -1979,15 +1959,9 @@ static void make3by3(Matrix &A, double a11, double a12, double a13, double a21,
      */
 
     UnitMat(ss_dim, A); /* set matrix to unit 3x3 matrix */
-    A[0][0] = a11;
-    A[0][1] = a12;
-    A[0][2] = a13;
-    A[1][0] = a21;
-    A[1][1] = a22;
-    A[1][2] = a23;
-    A[2][0] = a31;
-    A[2][1] = a32;
-    A[2][2] = a33;
+  A[0][0] = a11; A[0][1] = a12; A[0][2] = a13;
+  A[1][0] = a21; A[1][1] = a22; A[1][2] = a23;
+  A[2][0] = a31; A[2][1] = a32; A[2][2] = a33;
 }
 
 /****************************************************************************
@@ -2024,20 +1998,13 @@ static void make4by5(Matrix &A, double a11, double a12, double a15, double a21,
         double a22, double a25, double a33, double a34, double a35, double a43,
         double a44, double a45) {
     UnitMat(ss_dim, A); /* Initializes A to identity matrix */
-    A[0][0] = a11;
-    A[0][1] = a12;
-    A[0][4] = a15;
-    A[1][0] = a21;
-    A[1][1] = a22;
-    A[1][4] = a25;
-    A[2][2] = a33;
-    A[2][3] = a34;
-    A[2][4] = a35;
-    A[3][2] = a43;
-    A[3][3] = a44;
-    A[3][4] = a45;
+  A[0][0] = a11; A[0][1] = a12; A[0][4] = a15;
+  A[1][0] = a21; A[1][1] = a22; A[1][4] = a25;
+  A[2][2] = a33; A[2][3] = a34; A[2][4] = a35;
+  A[3][2] = a43; A[3][3] = a44; A[3][4] = a45;
 }
 
+
 static void mergeto4by5(Matrix &A, Matrix &AH, Matrix &AV) {
     /*
      merges two 3x3 matrices AH (H-plane) and AV (V-plane) into one
@@ -2084,13 +2051,17 @@ void Drift_SetMatrix(int Fnum1, int Knum1) {
     cellp = &Cell[ElemFam[Fnum1 - 1].KidList[Knum1 - 1]];
     elemp = &cellp->Elem;
     D = elemp->D;
-    L = elemp->PL / (1.0 + globval.dPparticle); /* L = L / (1 + dP) */
-    make4by5(D->D55, 1.0, L, 0.0, 0.0, 1.0, 0.0, 1.0, L, 0.0, 0.0, 1.0, 0.0);
+  L = elemp->PL/(1.0+globval.dPparticle);  /* L = L / (1 + dP) */
+  make4by5(D->D55,
+	   1.0, L, 0.0, 0.0, 1.0, 0.0,
+	   1.0, L, 0.0, 0.0, 1.0, 0.0);
 }
 
 static void driftmat(Matrix &ah, double L) {
     L /= 1 + globval.dPparticle;
-    make4by5(ah, 1.0, L, 0.0, 0.0, 1.0, 0.0, 1.0, L, 0.0, 0.0, 1.0, 0.0);
+  make4by5(ah,
+	   1.0, L, 0.0, 0.0, 1.0, 0.0,
+	   1.0, L, 0.0, 0.0, 1.0, 0.0);
 }
 
 static void quadmat(Matrix &ahv, double L, double k) {
@@ -2153,49 +2124,49 @@ static void quadmat(Matrix &ahv, double L, double k) {
 
 /****************************************************************************/
 /* static void bendmat(vector *M, double L, double irho, double phi1,
- double phi2, double gap, double k)
+                    double phi2, double gap, double k)
 
- Purpose:  called  by Mpole_Setmatrix
+   Purpose:  called  by Mpole_Setmatrix
 
- For a quadrupole  see quadmat routine for explanation
+       For a quadrupole  see quadmat routine for explanation
 
- For a dipole
+       For a dipole
 
- (1            0 0)
- Edge(theta) = (h*tan(theta) 1 0)
- (0            0 1)
+                         (1            0 0)
+           Edge(theta) = (h*tan(theta) 1 0)
+                         (0            0 1)
 
- (1                 0 0)
- Edge(theta) = (-h*tan(theta-psi) 1 0)
- (0                 0 1)
+                         (1                 0 0)
+           Edge(theta) = (-h*tan(theta-psi) 1 0)
+                         (0                 0 1)
 
- 2
- K1*gap*h*(1 + sin phi)
- psi = -----------------------, K1 = 1/2
- cos phi
+                                    2
+                   K1*gap*h*(1 + sin phi)
+            psi = -----------------------, K1 = 1/2
+                        cos phi
 
- Input:
- L   : length [m]
- irho: 1/rho [1/m]
- phi1: entrance edge angle [degres]
- phi2: exit edge angle [degres]
- K   : gradient = n/Rho
+   Input:
+      L   : length [m]
+      irho: 1/rho [1/m]
+      phi1: entrance edge angle [degres]
+      phi2: exit edge angle [degres]
+      K   : gradient = n/Rho
 
- Output:
- M transfer matrix
+   Output:
+       M transfer matrix
 
- Return:
- none
+   Return:
+       none
 
- Global variables:
- none
+   Global variables:
+       none
 
- Specific functions:
- quadmat, make3by3
- UnitMat, MulRMat, psi
+   Specific functions:
+       quadmat, make3by3
+       UnitMat, MulRMat, psi
 
- Comments:
- none
+   Comments:
+       none
 
  ****************************************************************************/
 static void bendmat(Matrix &M, double L, double irho, double phi1, double phi2,
@@ -2236,28 +2207,29 @@ static void bendmat(Matrix &M, double L, double irho, double phi1, double phi2,
 
     if (k == 0.0) {
         /* simple vertical dipole magnet */
-        /*
-         H-plane
-         2    2                2
-         px + py              2 x
-         H = --------  - h*x*dP + h ---
-         2*(1+dP)               2
-
-         2     2
-         dx     h        h*dP
-         --2 + ---- x = -----
-         ds    1+dP      1+dP
-
-
-         let be u = Lh/sqrt(1+dP) then the transfert matrix becomes:
-
-         (                              sin(u)              1- cos(u)      )
-         (          cos(u)         --------------       -----------------  )
-         (                          h sqrt(1+dP)                 h         )
-         (  -sin(u)*sqrt(1+dP)*h        cos(u)           sin(u)*sqrt(1+dP) )
-         (            0                  0                       1         )
-
-         */
+          /* simple vertical dipole magnet */
+    /*
+       H-plane
+                          2    2                2
+                        px + py              2 x
+                   H = --------  - h*x*dP + h ---
+                        2*(1+dP)               2
+
+                     2     2
+                   dx     h        h*dP
+                   --2 + ---- x = -----
+                   ds    1+dP      1+dP
+
+                   
+       let be u = Lh/sqrt(1+dP) then the transfert matrix becomes:
+        
+    (                              sin(u)              1- cos(u)      )
+    (          cos(u)         --------------       -----------------  )
+    (                          h sqrt(1+dP)                 h         )
+    (  -sin(u)*sqrt(1+dP)*h        cos(u)           sin(u)*sqrt(1+dP) )
+    (            0                  0                       1         )
+     
+    */
         c = cos(r);
         s = sin(r);
         make3by3(ah, c, s / (irho * scoef), (1.0 - c) / irho,
@@ -2282,29 +2254,29 @@ static void bendmat(Matrix &M, double L, double irho, double phi1, double phi2,
         sk = sqrt(afk);
         p = L * sk / scoef;
         if (fk < 0.0) {
-            /*
-             H-plane
-             2    2                     2
-             px + py                 2   x
-             H = --------  - h*x*dP + (k+h ) ---
-             2*(1+dP)                    2
+           /*
+       H-plane
+                          2    2                     2
+                        px + py                 2   x
+                   H = --------  - h*x*dP + (k+h ) ---
+                        2*(1+dP)                    2
 
-             2      2
-             dx    k+h        h*dP
-             --2 + ---- x = -----
-             ds    1+dP      1+dP
+                     2      2
+                   dx    k+h        h*dP
+                   --2 + ---- x = -----
+                   ds    1+dP      1+dP
 
 
-             let be u = Lsqrt(|h*h+b2|)/sqrt(1+dP)
-             then the transfert matrix becomes:
+       let be u = Lsqrt(|h*h+b2|)/sqrt(1+dP)
+       then the transfert matrix becomes:
 
-             (                              sin(u)              1- cos(u)      )
-             (          cos(u)         --------------       -----------------  )
-             (                          sk*sqrt(1+dP)           |k+h*h|*h      )
-             (  -sin(u)*sqrt(1+dP)*sk      cos(u)        h*sin(u)*sqrt(1+dP)/sk)
-             (            0                  0                       1         )
+    (                              sin(u)              1- cos(u)      )
+    (          cos(u)         --------------       -----------------  )
+    (                          sk*sqrt(1+dP)           |k+h*h|*h      )
+    (  -sin(u)*sqrt(1+dP)*sk      cos(u)        h*sin(u)*sqrt(1+dP)/sk)
+    (            0                  0                       1         )
 
-             */
+    */
             c = cos(p);
             s = sin(p);
             make3by3(ah, c, s / sk / scoef, irho * (1.0 - c) / (coef * afk),
@@ -2331,21 +2303,21 @@ static void bendmat(Matrix &M, double L, double irho, double phi1, double phi2,
     }
     /* Edge focusing, no effect due to gap between AU and AD */
 
-    /*
-     (1            0 0)
-     Edge(theta) = (h*tan(theta) 1 0)
-     (0            0 1)
-
-     (1                 0 0)
-     Edge(theta) = (-h*tan(theta-psi) 1 0)
-     (0                 0 1)
-
-     2
-     K1*gap*h*(1 + sin phi)
-     psi = -----------------------, K1 = 1/2
-     cos phi
-
-     */
+  /*
+                          (1            0 0)
+            Edge(theta) = (h*tan(theta) 1 0)
+                          (0            0 1)
+
+                          (1                 0 0)
+            Edge(theta) = (-h*tan(theta-psi) 1 0)
+                          (0                 0 1)
+
+                                    2
+                   K1*gap*h*(1 + sin phi)
+            psi = -----------------------, K1 = 1/2
+                        cos phi
+                
+  */
     if (phi1 != 0.0 || gap > 0.0) {
         UnitMat(3L, edge);
         edge[1][0] = irho * tan(dtor(phi1));