# -*- coding: utf-8 -*- """ General elements @author: Alexis Gamelin @date: 15/01/2020 """ import numpy as np from scipy.constants import c, e class Synchrotron: """ Synchrotron class to store main properties. """ def __init__(self, h, L, E0, particle, **kwargs): self.particle = particle self._h = h self.L = L self.E0 = E0 # Nominal (total) energy of the ring [eV] self.ac = kwargs.get('ac') # Momentum compaction factor self.U0 = kwargs.get('U0') # Energy loss per turn [eV] self.tau = kwargs.get('tau') # X/Y/S damping times [s] self.sigma_delta = kwargs.get('sigma_delta') # Equilibrium energy spread self.sigma_0 = kwargs.get('sigma_0') # Natural bunch length [s] self.tune = kwargs.get('tune') # X/Y/S tunes self.emit = kwargs.get('emit') # X/Y emittances in [m.rad] self.chro = kwargs.get('chro') # X/Y (non-normalized) chromaticities self.mean_optics = kwargs.get('mean_optics') # Optics object with mean values @property def h(self): """Harmonic number""" return self._h @h.setter def h(self,value): self._h = value self.L = self.L # call setter @property def L(self): """Ring circumference [m]""" return self._L @L.setter def L(self,value): self._L = value self._T0 = self.L/c self._f0 = 1/self.T0 self._omega0 = 2*np.pi*self.f0 self._f1 = self.h*self.f0 self._omega1 = 2*np.pi*self.f1 self._k1 = self.omega1/c @property def T0(self): """Revolution time [s]""" return self._T0 @T0.setter def T0(self, value): self.L = c*value @property def f0(self): """Revolution frequency [Hz]""" return self._f0 @f0.setter def f0(self,value): self.L = c/value @property def omega0(self): """Angular revolution frequency [Hz rad]""" return self._omega0 @omega0.setter def omega0(self,value): self.L = 2*np.pi*c/value @property def f1(self): """Fundamental RF frequency [Hz]""" return self._f1 @f1.setter def f1(self,value): self.L = self.h*c/value @property def omega1(self): """Fundamental RF angular frequency[Hz rad]""" return self._omega1 @omega1.setter def omega1(self,value): self.L = 2*np.pi*self.h*c/value @property def k1(self): """Fundamental RF wave number [m**-1]""" return self._k1 @k1.setter def k1(self,value): self.L = 2*np.pi*self.h/value @property def gamma(self): """Relativistic gamma""" return self._gamma @gamma.setter def gamma(self, value): self._gamma = value self._beta = np.sqrt(1 - self.gamma**-2) self._E0 = self.gamma*self.particle.mass*c**2/e @property def beta(self): """Relativistic beta""" return self._beta @beta.setter def beta(self, value): self.gamma = 1/np.sqrt(1-value**2) @property def E0(self): """Nominal (total) energy of the ring [eV]""" return self._E0 @E0.setter def E0(self, value): self.gamma = value/(self.particle.mass*c**2/e) @property def eta(self): """Momentum compaction""" return self.ac - 1/(self.gamma**2) @property def sigma(self): """RMS beam size at equilibrium""" sigma = np.zeros((4,)) sigma[0] = (self.emit[0]*self.mean_optics.beta[0] + self.mean_optics.disp[0]**2*self.sigma_delta)**0.5 sigma[1] = (self.emit[0]*self.mean_optics.alpha[0] + self.mean_optics.dispp[0]**2*self.sigma_delta)**0.5 sigma[2] = (self.emit[1]*self.mean_optics.beta[1] + self.mean_optics.disp[1]**2*self.sigma_delta)**0.5 sigma[3] = (self.emit[1]*self.mean_optics.alpha[1] + self.mean_optics.dispp[1]**2*self.sigma_delta)**0.5 return sigma