# -*- coding: utf-8 -*- """ Beam loading module Created on Fri Aug 23 13:32:03 2019 @author: gamelina """ import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.path as mpltPath from mpl_toolkits.mplot3d import Axes3D import sys from mpi4py import MPI from scipy.optimize import root, fsolve from scipy.constants import c from scipy.integrate import solve_ivp, quad, romb from scipy.interpolate import interp1d, griddata from scipy import real, imag class BeamLoadingVlasov(): """Class used to compute beam equilibrium profile and stability for a given storage ring and a list of RF cavities of any harmonic. The class assumes an uniform filling of the storage ring. Based on an extension of [1]. [1] Venturini, M. (2018). Passive higher-harmonic rf cavities with general settings and multibunch instabilities in electron storage rings. Physical Review Accelerators and Beams, 21(11), 114404. Parameters ---------- ring : Synchrotron object cavity_list : list of CavityResonator objects I0 : beam current in [A]. auto_set_MC_theta : if True, allow class to change cavity phase for CavityResonator objetcs with m = 1 (i.e. main cavities) F : list of form factor amplitude PHI : list of form factor phase B1 : lower intergration boundary B2 : upper intergration boundary """ def __init__( self, ring, cavity_list, I0, auto_set_MC_theta=False, F=None, PHI=None, B1=-0.2, B2=0.2): self.ring = ring self.cavity_list = cavity_list self.I0 = I0 self.n_cavity = len(cavity_list) self.auto_set_MC_theta = auto_set_MC_theta if F is None: self.F = np.ones((self.n_cavity,)) else: self.F = F if PHI is None: self.PHI = np.zeros((self.n_cavity,)) else: self.PHI = PHI self.B1 = B1 self.B2 = B2 self.mpi = False self.__version__ = "1.0" # Define constants for scaled potential u(z) self.u0 = self.ring.U0 / ( self.ring.ac * self.ring.sigma_delta**2 * self.ring.E0 * self.ring.L) self.ug = np.zeros((self.n_cavity,)) self.ub = np.zeros((self.n_cavity,)) self.update_potentials() def update_potentials(self): """Update potentials with cavity and ring data.""" for i in range(self.n_cavity): cavity = self.cavity_list[i] self.ug[i] = cavity.Vg / ( self.ring.ac * self.ring.sigma_delta ** 2 * self.ring.E0 * self.ring.L * self.ring.k1 * cavity.m) self.ub[i] = 2 * self.I0 * cavity.Rs / ( self.ring.ac * self.ring.sigma_delta**2 * self.ring.E0 * self.ring.L * self.ring.k1 * cavity.m * (1 + cavity.beta)) def energy_balance(self): """Return energy balance for the synchronous particle (z = 0 ,delta = 0).""" delta = self.ring.U0 for i in range(self.n_cavity): cavity = self.cavity_list[i] delta += cavity.Vb(self.I0) * self.F[i] * np.cos(cavity.psi - self.PHI[i]) delta -= cavity.Vg * np.cos(cavity.theta_g) return delta def center_of_mass(self): """Return center of mass position in [s]""" z0 = np.linspace(self.B1, self.B2, 1000) rho = self.rho(z0) CM = np.average(z0, weights=rho) return CM/c def u(self, z): """Scaled potential u(z)""" pot = self.u0 * z for i in range(self.n_cavity): cavity = self.cavity_list[i] pot += - self.ug[i] * ( np.sin(self.ring.k1 * cavity.m * z + cavity.theta_g) - np.sin(cavity.theta_g)) pot += self.ub[i] * self.F[i] * np.cos(cavity.psi) * ( np.sin(self.ring.k1 * cavity.m * z + cavity.psi - self.PHI[i]) - np.sin(cavity.psi - self.PHI[i])) return pot def du_dz(self, z): """Partial derivative of the scaled potential u(z) by z""" pot = self.u0 for i in range(self.n_cavity): cavity = self.cavity_list[i] pot += - self.ug[i] * self.ring.k1 * cavity.m * np.cos(self.ring.k1 * cavity.m * z + cavity.theta_g) pot += self.ub[i] * self.F[i] * self.ring.k1 * cavity.m * np.cos(cavity.psi) * np.cos(self.ring.k1 * cavity.m * z + cavity.psi - self.PHI[i]) return pot def uexp(self, z): return np.exp(-1 * self.u(z)) def integrate_func(self, f, g): """Return Integral[f*g]/Integral[f] between B1 and B2""" A = quad(lambda x: f(x) * g(x), self.B1, self.B2) B = quad(f, self.B1, self.B2) return A[0] / B[0] def to_solve(self, x, CM=True): """System of non-linear equation to solve to find the form factors F and PHI at equilibrum. The system is composed of Eq. (B6) and (B7) of [1] for each cavity. If auto_set_MC_theta == True, the system also find the main cavity phase to impose energy balance or cancel center of mass offset. If CM is True, the system imposes zero center of mass offset, if False, the system imposes energy balance. """ # Update values of F, PHI and theta if self.auto_set_MC_theta: self.F = x[:-1:2] for i in range(self.n_cavity): cavity = self.cavity_list[i] if cavity.m == 1: cavity.theta = x[-1] cavity.set_generator(0.5) self.update_potentials() else: self.F = x[::2] self.PHI = x[1::2] # Compute system if self.auto_set_MC_theta: res = np.zeros((self.n_cavity * 2 + 1,)) for i in range(self.n_cavity): cavity = self.cavity_list[i] res[2 * i] = self.F[i] * np.cos(self.PHI[i]) - self.integrate_func( lambda y: self.uexp(y), lambda y: np.cos(self.ring.k1 * cavity.m * y)) res[2 * i + 1] = self.F[i] * np.sin(self.PHI[i]) - self.integrate_func( lambda y: self.uexp(y), lambda y: np.sin(self.ring.k1 * cavity.m * y)) # Factor 1e-8 or 1e12 for better convergence if CM is True: res[self.n_cavity * 2] = self.center_of_mass() * 1e12 else: res[self.n_cavity * 2] = self.energy_balance() * 1e-8 else: res = np.zeros((self.n_cavity * 2,)) for i in range(self.n_cavity): cavity = self.cavity_list[i] res[2 * i] = self.F[i] * np.cos(self.PHI[i]) - self.integrate_func( lambda y: self.uexp(y), lambda y: np.cos(self.ring.k1 * cavity.m * y)) res[2 * i + 1] = self.F[i] * np.sin(self.PHI[i]) - self.integrate_func( lambda y: self.uexp(y), lambda y: np.sin(self.ring.k1 * cavity.m * y)) return res def rho(self, z): """Return bunch equilibrium profile at postion z""" A = quad(lambda y: self.uexp(y), self.B1, self.B2) return self.uexp(z) / A[0] def plot_rho(self, z1=None, z2=None): """Plot the bunch equilibrium profile between z1 and z2""" if z1 is None: z1 = self.B1 if z2 is None: z2 = self.B2 z0 = np.linspace(z1, z2, 1000) plt.plot(z0, self.rho(z0)) plt.xlabel("z [m]") plt.title("Equilibrium bunch profile") def voltage(self, z): """Return the RF system total voltage at position z""" Vtot = 0 for i in range(self.n_cavity): cavity = self.cavity_list[i] Vtot += cavity.VRF(z, self.I0, self.F[i], self.PHI[i]) return Vtot def dV(self, z): """Return derivative of the RF system total voltage at position z""" Vtot = 0 for i in range(self.n_cavity): cavity = self.cavity_list[i] Vtot += cavity.dVRF(z, self.I0, self.F[i], self.PHI[i]) return Vtot def ddV(self, z): """Return the second derivative of the RF system total voltage at position z""" Vtot = 0 for i in range(self.n_cavity): cavity = self.cavity_list[i] Vtot += cavity.ddVRF(z, self.I0, self.F[i], self.PHI[i]) return Vtot def deltaVRF(self, z): """Return the generator voltage minus beam loading voltage of the total RF system at position z""" Vtot = 0 for i in range(self.n_cavity): cavity = self.cavity_list[i] Vtot += cavity.deltaVRF(z, self.I0, self.F[i], self.PHI[i]) return Vtot def plot_dV(self, z1=None, z2=None): """Plot the derivative of RF system total voltage between z1 and z2""" if z1 is None: z1 = self.B1 if z2 is None: z2 = self.B2 z0 = np.linspace(z1, z2, 1000) plt.plot(z0, self.dV(z0)) plt.xlabel("z [m]") plt.ylabel("Total RF voltage (V)") def plot_voltage(self, z1=None, z2=None): """Plot the RF system total voltage between z1 and z2""" if z1 is None: z1 = self.B1 if z2 is None: z2 = self.B2 z0 = np.linspace(z1, z2, 1000) plt.plot(z0, self.voltage(z0)) plt.xlabel("z [m]") plt.ylabel("Total RF voltage (V)") def std_rho(self, z1=None, z2=None): """Return the rms bunch equilibrium size in [m]""" if z1 is None: z1 = self.B1 if z2 is None: z2 = self.B2 z0 = np.linspace(z1, z2, 1000) values = self.rho(z0) average = np.average(z0, weights=values) variance = np.average((z0 - average)**2, weights=values) return np.sqrt(variance) def beam_equilibrium(self, x0=None, tol=1e-4, method='hybr', options=None, plot = False, CM=True): """Solve system of non-linear equation to find the form factors F and PHI at equilibrum. Can be used to compute the equilibrium bunch profile. Parameters ---------- x0 : initial guess tol : tolerance for termination of the algorithm method : method used by scipy.optimize.root to solve the system options : options given to scipy.optimize.root plot : if True, plot the equilibrium bunch profile CM : if True, the system imposes zero center of mass offset, if False, the system imposes energy balance. Returns ------- sol : OptimizeResult object representing the solution """ if x0 is None: x0 = [1, 0] * self.n_cavity if self.auto_set_MC_theta: x0 = x0 + [self.cavity_list[0].theta] if CM: print("The initial center of mass offset is " + str(self.center_of_mass()*1e12) + " ps") else: print("The initial energy balance is " + str(self.energy_balance()) + " eV") sol = root(lambda x : self.to_solve(x, CM), x0, tol=tol, method=method, options=options) # Update values of F, PHI and theta_g if self.auto_set_MC_theta: self.F = sol.x[:-1:2] for i in range(self.n_cavity): cavity = self.cavity_list[i] if cavity.m == 1: cavity.theta = sol.x[-1] else: self.F = sol.x[::2] self.PHI = sol.x[1::2] if CM: print("The final center of mass offset is " + str(self.center_of_mass()*1e12) + " ps") else: print("The final energy balance is " + str(self.energy_balance()) + " eV") print("The algorithm has converged: " + str(sol.success)) if plot: self.plot_rho(self.B1 / 4, self.B2 / 4) return sol def H0(self, z): """Unperturbed Hamiltonian for delta = 0""" return self.u(z)*self.ring.ac*c*self.ring.sigma_delta**2 def H0_val(self, z, value): return self.H0(value) - self.H0(z) def Jfunc(self, z, zri_val): """Convenience function to compute the J integral""" return np.sqrt(2*self.H0(zri_val)/(self.ring.ac*c) - 2*self.u(z)*self.ring.sigma_delta**2) def Tsfunc(self, z, zri_val): """Convenience function to compute the Ts integral""" return 1/np.sqrt(2*self.H0(zri_val)/(self.ring.ac*c) - 2*self.u(z)*self.ring.sigma_delta**2) def dz_dt(self, delta): """dz/dt part of the equation of motion for synchrotron oscillation""" return self.ring.ac*c*delta def ddelta_dt(self, z): """ddelta/dt part of the equation of motion for synchrotron oscillation""" VRF = 0 for i in range(self.n_cavity): cav = self.cavity_list[i] VRF += cav.VRF(z, self.I0, self.F[i],self.PHI[i]) return (VRF - self.ring.U0)/(self.ring.E0*self.ring.T0) def EOMsystem(self, t, y): """System of equations of motion for synchrotron oscillation Parameters ---------- t : time y[0] : z y[1] : delta """ res = np.zeros(2,) res[0] = self.dz_dt(y[1]) res[1] = self.ddelta_dt(y[0]) return res def cannonical_transform(self, zmax = 4.5e-2, tmax = 2e-3, nz = 1000, ntime = 1000, plot = False, epsilon = 1e-10, rtol = 1e-9, atol = 1e-13, epsrel = 1e-9, epsabs = 1e-11, zri0_coef = 1e-2, n_pow = 16, eps = 1e-9): """Compute cannonical transform zeta, see [1] appendix C. Parameters ---------- zmax : maximum amplitude of the z-grid for the cannonical transform computation nz : number of point in the z-grid tmax : maximum amplitude of the time-grid ntime : number of point in the time-grid plot : if True, plot the surface map of the connonical transform epsilon : convergence criterium for the maximum value of uexp(zmax) and uexp(zmin) rtol, atol : relative and absolute tolerances for the equation of motion solving epsabs, epsrel : relative and absolute tolerances for the integration of J and Ts zri0_coef : lower boundary of the z-grid is given by dz * zri0_coef, to be lowered if lower values of z/J are needed in the grid n_pow : power of two used in the romb integration of J/Ts if the error on J/Ts is bigger than 0.1 % or if the value is nan eps : if the romb integration is used, the integration interval is limited to [zli[i] + eps,zri[i] - eps] """ # step (i) sol = root(lambda z : self.H0_val(z,zmax), -zmax) zmin = sol.x if sol.success == False: raise Exception("Error, no solution for zmin was found : " + sol.message) if self.uexp(zmax) > epsilon or self.uexp(zmin) > epsilon: raise Exception("Error, uexp(zmax) < epsilon or uexp(zmin) < epsilon, try to increase zmax") # step (ii) dz = (zmax-zmin)/nz zri = np.arange(nz)*dz zri[0] = dz*zri0_coef zli = np.zeros((nz,)) for i in range(nz): func = lambda z : self.H0_val(z,zri[i]) zli[i], infodict, ier, mesg = fsolve(func,-zri[i], full_output = True) if ier != 1: print("Error at i = " + str(i) + " : " + mesg) # step (iii) J = np.zeros((nz,)) J_err = np.zeros((nz,)) Ts = np.zeros((nz,)) Ts_err = np.zeros((nz,)) for i in range(0,nz): J[i], J_err[i] = quad(lambda z : 1/np.pi*self.Jfunc(z,zri[i]), zli[i], zri[i], epsabs = epsabs, epsrel = epsrel, limit = int(1e4)) if J_err[i]/J[i] > 0.001: print("Error is bigger than 0.1% for i = " + str(i) + ", J = " + str(J[i]) + ", relative error on J = " + str(J_err[i]/J[i])) x0 = np.linspace(zli[i] + eps,zri[i] - eps,2**n_pow+1) y0 = (lambda z : 1/np.pi*self.Jfunc(z,zri[i]))(x0) J[i] = romb(y0,x0[1]-x0[0]) print("Using romb to compute the integral instead of quad : J = " + str(J[i])) if np.isnan(J[i]): print("J is nan for i = " + str(i) ) x0 = np.linspace(zli[i] + eps,zri[i] - eps,2**n_pow+1) y0 = (lambda z : 1/np.pi*self.Jfunc(z,zri[i]))(x0) J[i] = romb(y0,x0[1]-x0[0]) print("Using romb to compute the integral instead of quad : J = " + str(J[i])) Ts[i], Ts_err[i] = quad(lambda z : 2*self.Tsfunc(z,zri[i]) / (self.ring.ac*c), zli[i], zri[i], epsabs = epsabs, epsrel = epsrel, limit = int(1e4)) if Ts_err[i]/Ts[i] > 0.001: print("Error is bigger than 0.1% for i = " + str(i) + ", Ts = " + str(Ts[i]) + ", relative error on Ts = " + str(Ts_err[i]/Ts[i])) x0 = np.linspace(zli[i] + eps,zri[i] - eps,2**n_pow+1) y0 = (lambda z : 2*self.Tsfunc(z,zri[i])/(self.ring.ac*c))(x0) Ts[i] = romb(y0,x0[1]-x0[0]) print("Using romb to compute the integral instead of quad : Ts = " + str(Ts[i])) if np.isnan(Ts[i]): print("Ts is nan for i = " + str(i) ) x0 = np.linspace(zli[i] + eps,zri[i] - eps,2**n_pow+1) y0 = (lambda z : 2*self.Tsfunc(z,zri[i])/(self.ring.ac*c))(x0) Ts[i] = romb(y0,x0[1]-x0[0]) print("Using romb to compute the integral instead of quad : Ts = " + str(Ts[i])) Omegas = 2*np.pi/Ts zri[0] = 0 # approximation to dz*zri0_coef # step (iv) z_sol = np.zeros((nz,ntime)) delta_sol = np.zeros((nz,ntime)) phi_sol = np.zeros((nz,ntime)) for i in range(nz): y0 = (zri[i], 0) tspan = (0, tmax) sol = solve_ivp(self.EOMsystem, tspan, y0, rtol = rtol, atol = atol) time_base = np.linspace(tspan[0],tspan[1],ntime) fz = interp1d(sol.t,sol.y[0],kind='cubic') # cubic decreases K std but increases a bit K mean fdelta = interp1d(sol.t,sol.y[1],kind='cubic') z_sol[i,:] = fz(time_base) delta_sol[i,:] = fdelta(time_base) phi_sol[i,:] = Omegas[i]*time_base; # Plot the surface if plot: fig = plt.figure() ax = Axes3D(fig) surf = ax.plot_surface(J, phi_sol.T, z_sol.T, rcount = 75, ccount = 75, cmap =plt.cm.viridis, linewidth=0, antialiased=True) fig.colorbar(surf, shrink=0.5, aspect=5) ax.set_xlabel('J [m]') ax.set_ylabel('$\phi$ [rad]') ax.set_zlabel('z [m]') # Check the results by computing the Jacobian matrix dz_dp = np.zeros((nz,ntime)) dz_dJ = np.zeros((nz,ntime)) dd_dp = np.zeros((nz,ntime)) dd_dJ = np.zeros((nz,ntime)) K = np.zeros((nz,ntime)) for i in range(1,nz-1): for j in range(1,ntime-1): dz_dp[i,j] = (z_sol[i,j+1] - z_sol[i,j-1])/(phi_sol[i,j+1] - phi_sol[i,j-1]) dz_dJ[i,j] = (z_sol[i+1,j] - z_sol[i-1,j])/(J[i+1] - J[i-1]) if (J[i+1] - J[i-1]) == 0 : print(i) dd_dp[i,j] = (delta_sol[i,j+1] - delta_sol[i,j-1])/(phi_sol[i,j+1] - phi_sol[i,j-1]) dd_dJ[i,j] = (delta_sol[i+1,j] - delta_sol[i-1,j])/(J[i+1] - J[i-1]) K = np.abs(dz_dp*dd_dJ - dd_dp*dz_dJ) K[0,:] = K[1,:] K[-1,:] = K[-2,:] K[:,0] = K[:,1] K[:,-1] = K[:,-2] print('Numerical Jacobian K: mean = ' + str(np.mean(K)) + ', value should be around 1.') print('Numerical Jacobian K: std = ' + str(np.std(K)) + ', value should be around 0.') print('Numerical Jacobian K: max = ' + str(np.max(K)) + ', value should be around 1.') print('If the values are far from their nominal values, decrease atol, rtol, epsrel and epsabs.') # Plot the numerical Jacobian if plot: fig = plt.figure() ax = fig.gca(projection='3d') surf = ax.plot_surface(J, phi_sol.T, K.T, rcount = 75, ccount = 75, cmap =plt.cm.viridis, linewidth=0, antialiased=True) fig.colorbar(surf, shrink=0.5, aspect=5) ax.set_xlabel('J [m]') ax.set_ylabel('$\phi$ [rad]') ax.set_zlabel('K') self.J = J self.phi = phi_sol.T self.z = z_sol.T self.delta = delta_sol.T self.Omegas = Omegas self.Ts = Ts JJ, bla = np.meshgrid(J,J) g = (JJ, phi_sol.T, z_sol.T) J_p, phi_p, z_p = np.vstack(map(np.ravel, g)) self.J_p = J_p self.phi_p = phi_p self.z_p = z_p # Provide interpolation functions for methods self.func_J = interp1d(z_sol[:,0],J, bounds_error=True) self.func_omegas = interp1d(J,Omegas, bounds_error=True) # Provide polygon to check if points are inside the map p1 = [[J[i],phi_sol[i,:].max()] for i in range(J.size)] p2 = [[J[i],phi_sol[i,:].min()] for i in range(J.size-1,0,-1)] poly = p1+p2 self.path = mpltPath.Path(poly) def dphi0(self, z, delta): """Partial derivative of the distribution function phi by z""" dphi0 = -np.exp(-delta**2/(2*self.ring.sigma_delta**2)) / (np.sqrt(2*np.pi)*self.ring.sigma_delta) * self.rho(z)*self.du_dz(z) return dphi0 def zeta(self, J, phi): """Compute zeta cannonical transformation z = zeta(J,phi) using 2d interpolation interp2d and bisplrep does not seem to work for this case griddata is working fine if method='linear' griddata return nan if the point is outside the grid """ z = griddata(np.array([self.J_p,self.phi_p]).T, self.z_p, (J, phi), method='linear') if np.isnan(np.sum(z)) == True: inside = self.path.contains_points(np.array([J, phi]).T) if (np.sum(inside != True) >= 1): print("Some points are outside the grid of the cannonical transformation zeta !") print(str(np.sum(inside != True)) + " points are outside the grid out of " + str(J.size) + " points.") plot_points_outside = False if(plot_points_outside): fig = plt.figure() ax = fig.add_subplot(111) patch = patches.PathPatch(self.path, facecolor='orange', lw=2) ax.add_patch(patch) ax.set_xlim(self.J_p.min()*0.5,self.J_p.max()*1.5) ax.set_ylim(self.phi_p.min()*0.5,self.phi_p.max()*1.5) ax.scatter(J[np.nonzero(np.invert(inside))[0]],phi[np.nonzero(np.invert(inside))[0]]) plt.show() vals = np.nonzero(np.invert(inside))[0] print("J min = " + str(J[vals].min())) print("J max = " + str(J[vals].max())) print("Phi min = " + str(phi[vals].min())) print("Phi max = " + str(phi[vals].max())) else: print("Some values interpolated from the zeta cannonical transformation are nan !") print("This may be due to a scipy version < 1.3") print("The nan values are remplaced by nearest values in the grid") arr = np.isnan(z) z[arr] = griddata(np.array([self.J_p,self.phi_p]).T, self.z_p, (J[arr], phi[arr]), method='nearest') if np.isnan(np.sum(z)) == True: print("Correction by nearest values in the grid failed, program is now stopping") raise ValueError("zeta cannonical transformation are nan") return z def H_coef(self, J_val, m, p, l, n_pow = 14): """Compute H_{m,p} (J_val) using zeta cannonical transformation""" """quad does not work here, quadrature or romberg are possible if error estimate is needed but much slower""" omegap = self.ring.omega0*(p*self.ring.h + l) phi0 = np.linspace(0,2*np.pi,2**n_pow+1) res = np.zeros(J_val.shape, dtype=complex) phi0_array = np.tile(phi0, J_val.size) J_array = np.array([]) for i in range(J_val.size): J_val_array = np.tile(J_val[i], phi0.size) J_array = np.concatenate((J_array, J_val_array)) zeta_values = self.zeta(J_array, phi0_array) y0 = np.exp(1j*m*phi0_array + 1j*omegap*zeta_values/c) for i in range(J_val.size): res[i] = romb(y0[i*phi0.size:(i+1)*phi0.size],phi0[1]-phi0[0]) return res def H_coef_star(self, J_val, m, p, l, n_pow = 14): """Compute H_{m,p}^* (J_val) using zeta cannonical transformation""" """quad does not work here, quadrature or romberg are possible if error estimate is needed but much slower""" omegap = self.ring.omega0*(p*self.ring.h + l) phi0 = np.linspace(0,2*np.pi,2**n_pow+1) res = np.zeros(J_val.shape, dtype=complex) phi0_array = np.tile(phi0, J_val.size) J_array = np.array([]) for i in range(J_val.size): J_val_array = np.tile(J_val[i], phi0.size) J_array = np.concatenate((J_array, J_val_array)) zeta_values = self.zeta(J_array, phi0_array) y0 = np.exp( - 1j*m*phi0_array - 1j*omegap*zeta_values/c) for i in range(J_val.size): res[i] = romb(y0[i*phi0.size:(i+1)*phi0.size],phi0[1]-phi0[0]) return res def HH_coef(self, J_val, m, p, pp, l, n_pow = 10): """Compute H_{m,p} (J_val) * H_{m,pp}^* (J_val) using zeta cannonical transformation""" """quad does not work here, quadrature or romberg are possible if error estimate is needed but much slower""" omegapH = self.ring.omega0*(p*self.ring.h + l) omegapH_star = self.ring.omega0*(pp*self.ring.h + l) phi0 = np.linspace(0,2*np.pi,2**n_pow+1) H = np.zeros(J_val.shape, dtype=complex) H_star = np.zeros(J_val.shape, dtype=complex) phi0_array = np.tile(phi0, J_val.size) J_array = np.array([]) for i in range(J_val.size): J_val_array = np.tile(J_val[i], phi0.size) J_array = np.concatenate((J_array, J_val_array)) zeta_values = self.zeta(J_array, phi0_array) y0 = np.exp( 1j*m*phi0_array + 1j*omegapH*zeta_values/c) y1 = np.exp( - 1j*m*phi0_array - 1j*omegapH_star*zeta_values/c) for i in range(J_val.size): H[i] = romb(y0[i*phi0.size:(i+1)*phi0.size],phi0[1]-phi0[0]) H_star[i] = romb(y1[i*phi0.size:(i+1)*phi0.size],phi0[1]-phi0[0]) return H*H_star def J_from_z(self, z): """Return the action J corresponding to a given amplitude z_r, corresponds to the inversion of z_r = zeta(J,0) : J = zeta^-1(z) """ return self.func_J(z) def Omegas_from_z(self,z): """Return the synchrotron angular frequency omega_s for a given amplitude z_r""" return self.func_omegas(self.J_from_z(z)) def G(self,m,p,pp,l,omega,delta_val = 0, n_pow = 8, Gmin = 1e-8, Gmax = 4.5e-2): """Compute the G integral""" g_func = lambda z : self.HH_coef(self.J_from_z(z), m, p, pp, l)*self.dphi0(z,delta_val)/(omega - m*self.Omegas_from_z(z)) z0 = np.linspace(Gmin,Gmax,2**n_pow+1) y0 = g_func(z0) G_val = romb(y0,z0[1]-z0[0]) #if( np.abs(y0[0]/G_val) > 0.001 or np.abs(y0[-1]/G_val) > 0.001 ): #print("Integration boundaries for G value might be wrong.") #plt.plot(z0,y0) return G_val def mpi_init(self): """Switch on mpi""" self.mpi = True comm = MPI.COMM_WORLD rank = comm.Get_rank() if(rank == 0): pass else: while(True): order = comm.bcast(None,0) if(order == "init"): VLASOV = comm.bcast(None,0) if(order == "B_matrix"): Bsize = comm.bcast(None,0) if Bsize**2 != comm.size - 1: #raise ValueError("The number of processor must be Bsize**2 + 1, which is :",Bsize**2 + 1) #sys.exit() pass omega = comm.bcast(None,0) mmax = comm.bcast(None,0) l_solve = comm.bcast(None,0) Ind_table = np.zeros((2,Bsize)) # m, p for i in range(VLASOV.n_cavity): cav = VLASOV.cavity_list[i] Ind_table[0,(2*mmax + 1)*2*i:(2*mmax + 1)*(2*i + 1)] = np.arange(-mmax,mmax+1) Ind_table[0,(2*mmax + 1)*(2*i + 1):(2*mmax + 1)*(2*i+2)] = np.arange(-mmax,mmax+1) Ind_table[1,(2*mmax + 1)*2*i:(2*mmax + 1)*(2*i + 1)] = - cav.m Ind_table[1,(2*mmax + 1)*(2*i + 1):(2*mmax + 1)*(2*i+2)] = cav.m matrix_i = np.zeros((Bsize,Bsize)) matrix_j = np.zeros((Bsize,Bsize)) for i in range(Bsize): for j in range(Bsize): matrix_i[i,j] = i matrix_j[i,j] = j i = int(matrix_i.flatten()[rank-1]) j = int(matrix_j.flatten()[rank-1]) B = np.zeros((Bsize,Bsize), dtype=complex) omegap = VLASOV.ring.omega0*(Ind_table[1,j]*VLASOV.ring.h + l_solve) Z = np.zeros((1,),dtype=complex) for k in range(VLASOV.n_cavity): cav = VLASOV.cavity_list[k] Z += cav.Z(omegap + omega) if i == j: B[i,j] += 1 B[i,j] += 2*np.pi*1j*Ind_table[1,i]*VLASOV.I0/VLASOV.ring.E0/VLASOV.ring.T0*c*Z/omegap*VLASOV.G(Ind_table[0,i],Ind_table[1,i],Ind_table[1,j],l_solve,omega) comm.Reduce([B, MPI.COMPLEX], None, op=MPI.SUM, root=0) if(order == "stop"): sys.exit() def mpi_exit(self): """Switch off mpi""" self.mpi = False comm = MPI.COMM_WORLD rank = comm.Get_rank() if(rank == 0): comm.bcast("stop",0) def detB(self,omega,mmax,l_solve): """Return the determinant of the matrix B""" Bsize = 2*self.n_cavity*(2*mmax + 1) if(self.mpi): comm = MPI.COMM_WORLD comm.bcast("B_matrix",0) comm.bcast(Bsize,0) comm.bcast(omega,0) comm.bcast(mmax,0) comm.bcast(l_solve,0) B = np.zeros((Bsize,Bsize), dtype=complex) comm.Reduce([np.zeros((Bsize,Bsize), dtype=complex), MPI.COMPLEX], [B, MPI.COMPLEX],op=MPI.SUM, root=0) else: Ind_table = np.zeros((2,Bsize)) # m, p for i in range(self.n_cavity): cav = self.cavity_list[i] Ind_table[0,(2*mmax + 1)*2*i:(2*mmax + 1)*(2*i + 1)] = np.arange(-mmax,mmax+1) Ind_table[0,(2*mmax + 1)*(2*i + 1):(2*mmax + 1)*(2*i+2)] = np.arange(-mmax,mmax+1) Ind_table[1,(2*mmax + 1)*2*i:(2*mmax + 1)*(2*i + 1)] = - cav.m Ind_table[1,(2*mmax + 1)*(2*i + 1):(2*mmax + 1)*(2*i+2)] = cav.m B = np.eye(Bsize, dtype=complex) for i in range(Bsize): for j in range(Bsize): omegap = self.ring.omega0*(Ind_table[1,j]*self.ring.h + l_solve) Z = np.zeros((1,),dtype=complex) for k in range(self.n_cavity): cav = self.cavity_list[k] Z += cav.Z(omegap + omega) B[i,j] += 2*np.pi*1j*Ind_table[1,i]*self.I0/self.ring.E0/self.ring.T0*c*Z/omegap*self.G(Ind_table[0,i],Ind_table[1,i],Ind_table[1,j],l_solve,omega) return np.linalg.det(B) def solveB(self,omega0,mmax,l_solve, maxfev = 200): """Solve equation detB = 0 Parameters ---------- omega0 : initial guess with omega0[0] the real part of the solution and omega0[1] the imaginary part mmax : maximum absolute value of m, see Eq. 20 of [1] l_solve : instability coupled-bunch mode number maxfev : the maximum number of calls to the function Returns ------- omega : solution infodict : dictionary of scipy.optimize.fsolve ouput ier : interger flag, set to 1 if a solution was found mesg : if no solution is found, mesg details the cause of failure """ def func(omega): res = self.detB(omega[0] + 1j*omega[1],mmax,l_solve) return real(res), imag(res) if not self.mpi: omega, infodict, ier, mesg = fsolve(func,omega0, maxfev = maxfev, full_output = True) elif self.mpi and MPI.COMM_WORLD.rank == 0: comm = MPI.COMM_WORLD comm.bcast("init",0) comm.bcast(self, 0) omega, infodict, ier, mesg = fsolve(func,omega0, maxfev = maxfev, full_output = True) if ier != 1: print("The algorithm has not converged: " + str(ier)) print(mesg) return omega, infodict, ier, mesg