# -*- coding: utf-8 -*- """ This module defines the different monitor class which are used to save data during tracking. @author: Alexis Gamelin @date: 24/03/2020 """ import numpy as np import h5py as hp import random from mbtrack2.tracking.element import Element from mbtrack2.tracking.particles import Bunch, Beam from mbtrack2.tracking.rf import CavityResonator from scipy.interpolate import interp1d from abc import ABCMeta from scipy.fft import rfft, rfftfreq class Monitor(Element, metaclass=ABCMeta): """ Abstract Monitor class used for subclass inheritance to define all the different kind of monitors objects. The Monitor class is based on h5py module to be able to write data on structured binary files. The class provides a common file where the different Monitor subclass can write. Attributes ---------- file : HDF5 file Common file where all monitors, Monitor subclass elements, write the saved data. Based on class attribute _file_storage. file_name : string Name of the HDF5 file where the data is stored. Based on class attribute _file_name_storage. Methods ------- monitor_init(group_name, save_every, buffer_size, total_size, dict_buffer, dict_file, file_name=None, mpi_mode=True) Method called to initialize Monitor subclass. write() Write data from buffer to the HDF5 file. to_buffer(object_to_save) Save data to buffer. close() Close the HDF5 file shared by all Monitor subclass, must be called by at least an instance of a Montior subclass at the end of the tracking. track_bunch_data(object_to_save) Track method to use when saving bunch data. """ _file_name_storage = [] _file_storage = [] @property def file_name(self): """Common file where all monitors, Monitor subclass elements, write the saved data.""" try: return self._file_name_storage[0] except IndexError: print("The HDF5 file name for monitors is not set.") raise ValueError @property def file(self): """Name of the HDF5 file where the data is stored.""" try: return self._file_storage[0] except IndexError: print("The HDF5 file to store data is not set.") raise ValueError def monitor_init(self, group_name, save_every, buffer_size, total_size, dict_buffer, dict_file, file_name=None, mpi_mode=False, dict_dtype=None): """ Method called to initialize Monitor subclass. Parameters ---------- group_name : string Name of the HDF5 group in which the data for the current monitor will be saved. save_every : int or float Set the frequency of the save. The data is saved every save_every call of the montior. buffer_size : int or float Size of the save buffer. total_size : int or float Total size of the save. The following relationships between the parameters must exist: total_size % buffer_size == 0 number of call to track / save_every == total_size dict_buffer : dict Dictionary with keys as the attribute name to save and values as the shape of the buffer to create to hold the attribute, like (key.shape, buffer_size) dict_file : dict Dictionary with keys as the attribute name to save and values as the shape of the dataset to create to hold the attribute, like (key.shape, total_size) file_name : string, optional Name of the HDF5 where the data will be stored. Must be specified the first time a subclass of Monitor is instancied and must be None the following times. mpi_mode : bool, optional If True, open the HDF5 file in parallel mode, which is needed to allow several cores to write in the same file at the same time. If False, open the HDF5 file in standard mode. dict_dtype : dict, optional Dictionary with keys as the attribute name to save and values as the dtype to use to save the values. If None, float is used for all attributes. """ # setup and open common file for all monitors if file_name is not None: if len(self._file_name_storage) == 0: self._file_name_storage.append(file_name + ".hdf5") if len(self._file_storage) == 0: if mpi_mode == True: from mpi4py import MPI f = hp.File(self.file_name, "w", libver='earliest', driver='mpio', comm=MPI.COMM_WORLD) else: f = hp.File(self.file_name, "w", libver='earliest') self._file_storage.append(f) else: raise ValueError("File is already open.") else: raise ValueError("File name for monitors is already attributed.") self.group_name = group_name self.save_every = int(save_every) self.total_size = int(total_size) self.buffer_size = int(buffer_size) if total_size % buffer_size != 0: raise ValueError("total_size must be divisible by buffer_size.") self.buffer_count = 0 self.write_count = 0 self.track_count = 0 # setup attribute buffers from values given in dict_buffer for key, value in dict_buffer.items(): if dict_dtype == None: self.__setattr__(key,np.zeros(value)) else: self.__setattr__(key,np.zeros(value, dtype=dict_dtype[key])) self.time = np.zeros((self.buffer_size,), dtype=int) # create HDF5 groups and datasets to save data from group_name and # dict_file self.g = self.file.require_group(self.group_name) self.g.require_dataset("time", (self.total_size,), dtype=int) for key, value in dict_file.items(): if dict_dtype == None: self.g.require_dataset(key, value, dtype=float) else: self.g.require_dataset(key, value, dtype=dict_dtype[key]) # create a dictionary which handle slices slice_dict = {} for key, value in dict_file.items(): slice_dict[key] = [] for i in range(len(value)-1): slice_dict[key].append(slice(None)) self.slice_dict = slice_dict def write(self): """Write data from buffer to the HDF5 file.""" self.file[self.group_name]["time"][self.write_count*self.buffer_size:( self.write_count+1)*self.buffer_size] = self.time for key, value in self.dict_buffer.items(): slice_list = list(self.slice_dict[key]) slice_list.append(slice(self.write_count*self.buffer_size, (self.write_count+1)*self.buffer_size)) slice_tuple = tuple(slice_list) self.file[self.group_name][key][slice_tuple] = self.__getattribute__(key) self.file.flush() self.write_count += 1 def to_buffer(self, object_to_save): """ Save data to buffer. Parameters ---------- object_to_save : python object Depends on the Monitor subclass, typically a Beam or Bunch object. """ self.time[self.buffer_count] = self.track_count for key, value in self.dict_buffer.items(): slice_list = list(self.slice_dict[key]) slice_list.append(self.buffer_count) slice_tuple = tuple(slice_list) self.__getattribute__(key)[slice_tuple] = object_to_save.__getattribute__(key) self.buffer_count += 1 if self.buffer_count == self.buffer_size: self.write() self.buffer_count = 0 def close(self): """ Close the HDF5 file shared by all Monitor subclass, must be called by at least an instance of a Montior subclass at the end of the tracking. """ try: self.file.close() except ValueError: pass def track_bunch_data(self, object_to_save): """ Track method to use when saving bunch data. Parameters ---------- object_to_save : Beam or Bunch """ if self.track_count % self.save_every == 0: if isinstance(object_to_save, Beam): if (object_to_save.mpi_switch == True): if object_to_save.mpi.bunch_num == self.bunch_number: self.to_buffer(object_to_save[object_to_save.mpi.bunch_num]) else: self.to_buffer(object_to_save[self.bunch_number]) elif isinstance(object_to_save, Bunch): self.to_buffer(object_to_save) else: raise TypeError("object_to_save should be a Beam or Bunch object.") self.track_count += 1 class BunchMonitor(Monitor): """ Monitor a single bunch and save attributes (mean, std, emit, current, and cs_invariant). Parameters ---------- bunch_number : int Bunch to monitor save_every : int or float Set the frequency of the save. The data is saved every save_every call of the montior. buffer_size : int or float Size of the save buffer. total_size : int or float Total size of the save. The following relationships between the parameters must exist: total_size % buffer_size == 0 number of call to track / save_every == total_size file_name : string, optional Name of the HDF5 where the data will be stored. Must be specified the first time a subclass of Monitor is instancied and must be None the following times. mpi_mode : bool, optional If True, open the HDF5 file in parallel mode, which is needed to allow several cores to write in the same file at the same time. If False, open the HDF5 file in standard mode. Methods ------- track(object_to_save) Save data """ def __init__(self, bunch_number, save_every, buffer_size, total_size, file_name=None, mpi_mode=False): self.bunch_number = bunch_number group_name = "BunchData_" + str(self.bunch_number) dict_buffer = {"mean":(6, buffer_size), "std":(6, buffer_size), "emit":(3, buffer_size), "current":(buffer_size,), "cs_invariant":(2, buffer_size)} dict_file = {"mean":(6, total_size), "std":(6, total_size), "emit":(3, total_size), "current":(total_size,), "cs_invariant":(2, total_size)} self.monitor_init(group_name, save_every, buffer_size, total_size, dict_buffer, dict_file, file_name, mpi_mode) self.dict_buffer = dict_buffer self.dict_file = dict_file def track(self, object_to_save): """ Save data Parameters ---------- object_to_save : Bunch or Beam object """ self.track_bunch_data(object_to_save) class PhaseSpaceMonitor(Monitor): """ Monitor a single bunch and save the full phase space. Parameters ---------- bunch_number : int Bunch to monitor mp_number : int or float Number of macroparticle in the phase space to save. If less than the total number of macroparticles, a random fraction of the bunch is saved. save_every : int or float Set the frequency of the save. The data is saved every save_every call of the montior. buffer_size : int or float Size of the save buffer. total_size : int or float Total size of the save. The following relationships between the parameters must exist: total_size % buffer_size == 0 number of call to track / save_every == total_size file_name : string, optional Name of the HDF5 where the data will be stored. Must be specified the first time a subclass of Monitor is instancied and must be None the following times. mpi_mode : bool, optional If True, open the HDF5 file in parallel mode, which is needed to allow several cores to write in the same file at the same time. If False, open the HDF5 file in standard mode. Methods ------- track(object_to_save) Save data """ def __init__(self, bunch_number, mp_number, save_every, buffer_size, total_size, file_name=None, mpi_mode=False): self.bunch_number = bunch_number self.mp_number = int(mp_number) group_name = "PhaseSpaceData_" + str(self.bunch_number) dict_buffer = {"particles":(self.mp_number, 6, buffer_size), "alive":(self.mp_number, buffer_size)} dict_file = {"particles":(self.mp_number, 6, total_size), "alive":(self.mp_number, total_size)} self.monitor_init(group_name, save_every, buffer_size, total_size, dict_buffer, dict_file, file_name, mpi_mode) self.dict_buffer = dict_buffer self.dict_file = dict_file def track(self, object_to_save): """ Save data Parameters ---------- object_to_save : Bunch or Beam object """ self.track_bunch_data(object_to_save) def to_buffer(self, bunch): """ Save data to buffer. Parameters ---------- bunch : Bunch object """ self.time[self.buffer_count] = self.track_count if len(bunch.alive) != self.mp_number: index = np.arange(len(bunch.alive)) samples_meta = random.sample(list(index), self.mp_number) samples = sorted(samples_meta) else: samples = slice(None) self.alive[:, self.buffer_count] = bunch.alive[samples] for i, dim in enumerate(bunch): self.particles[:, i, self.buffer_count] = bunch.particles[dim][samples] self.buffer_count += 1 if self.buffer_count == self.buffer_size: self.write() self.buffer_count = 0 class BeamMonitor(Monitor): """ Monitor the full beam and save each bunch attributes (mean, std, emit and current). Parameters ---------- h : int Harmonic number of the ring. save_every : int or float Set the frequency of the save. The data is saved every save_every call of the montior. buffer_size : int or float Size of the save buffer. total_size : int or float Total size of the save. The following relationships between the parameters must exist: total_size % buffer_size == 0 number of call to track / save_every == total_size file_name : string, optional Name of the HDF5 where the data will be stored. Must be specified the first time a subclass of Monitor is instancied and must be None the following times. mpi_mode : bool, optional If True, open the HDF5 file in parallel mode, which is needed to allow several cores to write in the same file at the same time. If False, open the HDF5 file in standard mode. Methods ------- track(beam) Save data """ def __init__(self, h, save_every, buffer_size, total_size, file_name=None, mpi_mode=False): group_name = "Beam" dict_buffer = {"mean" : (6, h, buffer_size), "std" : (6, h, buffer_size), "emit" : (3, h, buffer_size), "current" : (h, buffer_size)} dict_file = {"mean" : (6, h, total_size), "std" : (6, h, total_size), "emit" : (3, h, total_size), "current" : (h, total_size)} self.monitor_init(group_name, save_every, buffer_size, total_size, dict_buffer, dict_file, file_name, mpi_mode) def track(self, beam): """ Save data Parameters ---------- beam : Beam object """ if self.track_count % self.save_every == 0: if (beam.mpi_switch == True): self.to_buffer(beam[beam.mpi.bunch_num], beam.mpi.bunch_num) else: self.to_buffer_no_mpi(beam) self.track_count += 1 def to_buffer(self, bunch, bunch_num): """ Save data to buffer, if mpi is being used. Parameters ---------- bunch : Bunch object bunch_num : int """ self.time[self.buffer_count] = self.track_count self.mean[:, bunch_num, self.buffer_count] = bunch.mean self.std[:, bunch_num, self.buffer_count] = bunch.std self.emit[:, bunch_num, self.buffer_count] = bunch.emit self.current[bunch_num, self.buffer_count] = bunch.current self.buffer_count += 1 if self.buffer_count == self.buffer_size: self.write(bunch_num) self.buffer_count = 0 def to_buffer_no_mpi(self, beam): """ Save data to buffer, if mpi is not being used. Parameters ---------- beam : Beam object """ self.time[self.buffer_count] = self.track_count self.mean[:, :, self.buffer_count] = beam.bunch_mean self.std[:, :, self.buffer_count] = beam.bunch_std self.emit[:, :, self.buffer_count] = beam.bunch_emit self.current[:, self.buffer_count] = beam.bunch_current self.buffer_count += 1 if self.buffer_count == self.buffer_size: self.write_no_mpi() self.buffer_count = 0 def write(self, bunch_num): """ Write data from buffer to the HDF5 file, if mpi is being used. Parameters ---------- bunch_num : int """ self.file[self.group_name]["time"][self.write_count*self.buffer_size:( self.write_count+1)*self.buffer_size] = self.time self.file[self.group_name]["mean"][:, bunch_num, self.write_count*self.buffer_size:(self.write_count+1) * self.buffer_size] = self.mean[:, bunch_num, :] self.file[self.group_name]["std"][:, bunch_num, self.write_count*self.buffer_size:(self.write_count+1) * self.buffer_size] = self.std[:, bunch_num, :] self.file[self.group_name]["emit"][:, bunch_num, self.write_count*self.buffer_size:(self.write_count+1) * self.buffer_size] = self.emit[:, bunch_num, :] self.file[self.group_name]["current"][bunch_num, self.write_count*self.buffer_size:(self.write_count+1) * self.buffer_size] = self.current[bunch_num, :] self.file.flush() self.write_count += 1 def write_no_mpi(self): """ Write data from buffer to the HDF5 file, if mpi is not being used. """ self.file[self.group_name]["time"][self.write_count*self.buffer_size:( self.write_count+1)*self.buffer_size] = self.time self.file[self.group_name]["mean"][:, :, self.write_count*self.buffer_size:(self.write_count+1) * self.buffer_size] = self.mean self.file[self.group_name]["std"][:, :, self.write_count*self.buffer_size:(self.write_count+1) * self.buffer_size] = self.std self.file[self.group_name]["emit"][:, :, self.write_count*self.buffer_size:(self.write_count+1) * self.buffer_size] = self.emit self.file[self.group_name]["current"][:, self.write_count*self.buffer_size:(self.write_count+1) * self.buffer_size] = self.current self.file.flush() self.write_count += 1 class ProfileMonitor(Monitor): """ Monitor a single bunch and save bunch profiles. Parameters ---------- bunch_number : int Bunch to monitor. save_every : int or float Set the frequency of the save. The data is saved every save_every call of the montior. buffer_size : int or float Size of the save buffer. total_size : int or float Total size of the save. The following relationships between the parameters must exist: total_size % buffer_size == 0 number of call to track / save_every == total_size dimensions : str or list of str, optional Dimensions to save. n_bin : int or list of int, optional Number of bin to use in each dimension. file_name : string, optional Name of the HDF5 where the data will be stored. Must be specified the first time a subclass of Monitor is instancied and must be None the following times. mpi_mode : bool, optional If True, open the HDF5 file in parallel mode, which is needed to allow several cores to write in the same file at the same time. If False, open the HDF5 file in standard mode. Methods ------- track(object_to_save) Save data. """ def __init__(self, bunch_number, save_every, buffer_size, total_size, dimensions="tau", n_bin=75, file_name=None, mpi_mode=False): self.bunch_number = bunch_number group_name = "ProfileData_" + str(self.bunch_number) if isinstance(dimensions, str): self.dimensions = [dimensions] else: self.dimensions = dimensions if isinstance(n_bin, int): self.n_bin = np.ones((len(self.dimensions),), dtype=int)*n_bin else: self.n_bin = n_bin dict_buffer = {} dict_file = {} for index, dim in enumerate(self.dimensions): dict_buffer.update({dim : (self.n_bin[index] - 1, buffer_size)}) dict_buffer.update({dim + "_bin" : (self.n_bin[index] - 1, buffer_size)}) dict_file.update({dim : (self.n_bin[index] - 1, total_size)}) dict_file.update({dim + "_bin" : (self.n_bin[index] - 1, total_size)}) self.monitor_init(group_name, save_every, buffer_size, total_size, dict_buffer, dict_file, file_name, mpi_mode) self.dict_buffer = dict_buffer self.dict_file = dict_file def to_buffer(self, bunch): """ Save data to buffer. Parameters ---------- bunch : Bunch object """ self.time[self.buffer_count] = self.track_count for index, dim in enumerate(self.dimensions): bins, sorted_index, profile, center = bunch.binning(dim, self.n_bin[index]) self.__getattribute__(dim + "_bin")[:, self.buffer_count] = center self.__getattribute__(dim)[:, self.buffer_count] = profile self.buffer_count += 1 if self.buffer_count == self.buffer_size: self.write() self.buffer_count = 0 def write(self): """Write data from buffer to the HDF5 file.""" self.file[self.group_name]["time"][self.write_count*self.buffer_size:( self.write_count+1)*self.buffer_size] = self.time for dim in self.dimensions: self.file[self.group_name][dim][:, self.write_count * self.buffer_size:(self.write_count+1) * self.buffer_size] = self.__getattribute__(dim) self.file[self.group_name][dim + "_bin"][:, self.write_count * self.buffer_size:(self.write_count+1) * self.buffer_size] = self.__getattribute__(dim + "_bin") self.file.flush() self.write_count += 1 def track(self, object_to_save): """ Save data. Parameters ---------- object_to_save : Bunch or Beam object """ self.track_bunch_data(object_to_save) class WakePotentialMonitor(Monitor): """ Monitor the wake potential from a single bunch and save attributes (tau, ...). Parameters ---------- bunch_number : int Bunch to monitor. wake_types : str or list of str Wake types to save: "Wlong, "Wxdip", ... n_bin : int Number of bin to be used to interpolate the wake potential on a fixed grid. save_every : int or float Set the frequency of the save. The data is saved every save_every call of the montior. buffer_size : int or float Size of the save buffer. total_size : int or float Total size of the save. The following relationships between the parameters must exist: total_size % buffer_size == 0 number of call to track / save_every == total_size file_name : string, optional Name of the HDF5 where the data will be stored. Must be specified the first time a subclass of Monitor is instancied and must be None the following times. mpi_mode : bool, optional If True, open the HDF5 file in parallel mode, which is needed to allow several cores to write in the same file at the same time. If False, open the HDF5 file in standard mode. Methods ------- track(wake_potential_to_save) Save data. """ def __init__(self, bunch_number, wake_types, n_bin, save_every, buffer_size, total_size, file_name=None, mpi_mode=False): self.bunch_number = bunch_number group_name = "WakePotentialData_" + str(self.bunch_number) if isinstance(wake_types, str): self.wake_types = [wake_types] else: self.wake_types = wake_types self.n_bin = n_bin*2 dict_buffer = {} dict_file = {} for index, dim in enumerate(self.wake_types): dict_buffer.update({"tau_" + dim : (self.n_bin, buffer_size)}) dict_file.update({"tau_" + dim : (self.n_bin, total_size)}) dict_buffer.update({"profile_" + dim : (self.n_bin, buffer_size)}) dict_file.update({"profile_" + dim : (self.n_bin, total_size)}) dict_buffer.update({dim : (self.n_bin, buffer_size)}) dict_file.update({dim : (self.n_bin, total_size)}) if dim == "Wxdip" or dim == "Wydip": dict_buffer.update({"dipole_" + dim : (self.n_bin, buffer_size)}) dict_file.update({"dipole_" + dim : (self.n_bin, total_size)}) self.monitor_init(group_name, save_every, buffer_size, total_size, dict_buffer, dict_file, file_name, mpi_mode) self.dict_buffer = dict_buffer self.dict_file = dict_file def to_buffer(self, wp): """ Save data to buffer. Parameters ---------- wp : WakePotential object """ self.time[self.buffer_count] = self.track_count for index, dim in enumerate(self.wake_types): tau0 = wp.__getattribute__("tau0_" + dim) profile0 = wp.__getattribute__("profile0_" + dim) WP0 = wp.__getattribute__(dim) if dim == "Wxdip": dipole0 = wp.__getattribute__("dipole_x") if dim == "Wydip": dipole0 = wp.__getattribute__("dipole_y") tau = np.linspace(tau0[0], tau0[-1], self.n_bin) f = interp1d(tau0, WP0, fill_value = 0, bounds_error = False) WP = f(tau) g = interp1d(tau0, profile0, fill_value = 0, bounds_error = False) profile = g(tau) if dim == "Wxdip" or dim == "Wydip": h = interp1d(tau0, dipole0, fill_value = 0, bounds_error = False) dipole = h(tau) self.__getattribute__("tau_" + dim)[:, self.buffer_count] = tau + wp.tau_mean self.__getattribute__("profile_" + dim)[:, self.buffer_count] = profile self.__getattribute__(dim)[:, self.buffer_count] = WP if dim == "Wxdip" or dim == "Wydip": self.__getattribute__("dipole_" + dim)[:, self.buffer_count] = dipole self.buffer_count += 1 if self.buffer_count == self.buffer_size: self.write() self.buffer_count = 0 def write(self): """Write data from buffer to the HDF5 file.""" self.file[self.group_name]["time"][self.write_count*self.buffer_size:( self.write_count+1)*self.buffer_size] = self.time for dim in self.wake_types: self.file[self.group_name]["tau_" + dim][:, self.write_count * self.buffer_size:(self.write_count+1) * self.buffer_size] = self.__getattribute__("tau_" + dim) self.file[self.group_name]["profile_" + dim][:, self.write_count * self.buffer_size:(self.write_count+1) * self.buffer_size] = self.__getattribute__("profile_" + dim) self.file[self.group_name][dim][:, self.write_count * self.buffer_size:(self.write_count+1) * self.buffer_size] = self.__getattribute__(dim) if dim == "Wxdip" or dim == "Wydip": self.file[self.group_name]["dipole_" + dim][:, self.write_count * self.buffer_size:(self.write_count+1) * self.buffer_size] = self.__getattribute__("dipole_" + dim) self.file.flush() self.write_count += 1 def track(self, wake_potential_to_save): """ Save data. Parameters ---------- object_to_save : WakePotential object """ if self.track_count % self.save_every == 0: self.to_buffer(wake_potential_to_save) self.track_count += 1 class BunchSpectrumMonitor(Monitor): """ Monitor the coherent and incoherent bunch spectrums. Parameters ---------- ring : Synchrotron object bunch_number : int Bunch to monitor mp_number : int or float Total number of macro-particles in the bunch. sample_size : int or float Number of macro-particles to be used for tune and FFT computation. This number cannot exceed mp_number. save_every : int or float Set the frequency of the save. The spectrums are computed every save_every call of the montior. buffer_size : int or float Size of the save buffer. total_size : int or float Total size of the save. The following relationships between the parameters must exist: total_size % buffer_size == 0 number of call to track / save_every == total_size - 1 dim : str, optional Dimensions in which the spectrums have to be computed. Can be: - "all" - "tau" - "x" - "y" - "xy" or "yx" - "xtau" or "taux" - "ytau" or "tauy" n_fft : int or float, optional The number of points used for FFT computation, if n_fft is bigger than save_every zero-padding is applied. If None, save_every is used. file_name : string, optional Name of the HDF5 where the data will be stored. Must be specified the first time a subclass of Monitor is instancied and must be None the following times. mpi_mode : bool, optional If True, open the HDF5 file in parallel mode, which is needed to allow several cores to write in the same file at the same time. If False, open the HDF5 file in standard mode. Attributes ---------- fft_resolution : float Return the fft resolution in [Hz]. signal_resolution : float Return the signal resolution in [Hz]. frequency_samples : array of float Return the fft frequency samples in [Hz]. Methods ------- track(bunch): Save spectrum data. """ def __init__(self, ring, bunch_number, mp_number, sample_size, save_every, buffer_size, total_size, dim="all", n_fft=None, file_name=None, mpi_mode=False): if n_fft is None: self.n_fft = int(save_every) else: self.n_fft = int(n_fft) self.sample_size = int(sample_size) self.store_dict = {"x":0,"y":1,"tau":2} if dim == "all": self.track_dict = {"x":0,"y":1,"tau":2} self.mean_index = [True, False, True, False, True, False] elif dim == "tau": self.track_dict = {"tau":0} self.mean_index = [False, False, False, False, True, False] elif dim == "x": self.track_dict = {"x":0} self.mean_index = [True, False, False, False, False, False] elif dim == "y": self.track_dict = {"y":0} self.mean_index = [False, False, True, False, False, False] elif dim == "xy" or dim == "yx": self.track_dict = {"x":0,"y":1} self.mean_index = [True, False, True, False, False, False] elif dim == "xtau" or dim == "taux": self.track_dict = {"x":0,"tau":1} self.mean_index = [True, False, False, False, True, False] elif dim == "ytau" or dim == "tauy": self.track_dict = {"y":0,"tau":1} self.mean_index = [False, False, True, False, True, False] else: raise ValueError("dim is not correct.") self.size_list = len(self.track_dict) self.ring = ring self.bunch_number = bunch_number group_name = "BunchSpectrum_" + str(self.bunch_number) dict_buffer = {"incoherent":(3, self.n_fft//2+1, buffer_size), "coherent":(3, self.n_fft//2+1, buffer_size), "mean_incoherent":(3,buffer_size), "std_incoherent":(3,buffer_size)} dict_file = {"incoherent":(3, self.n_fft//2+1, total_size), "coherent":(3, self.n_fft//2+1, total_size), "mean_incoherent":(3,total_size), "std_incoherent":(3,total_size)} self.monitor_init(group_name, save_every, buffer_size, total_size, dict_buffer, dict_file, file_name, mpi_mode) self.dict_buffer = dict_buffer self.dict_file = dict_file self.save_count = 0 self.positions = np.zeros((self.size_list, self.sample_size, self.save_every+1)) self.mean = np.zeros((self.size_list, self.save_every+1)) index = np.arange(0, int(mp_number)) self.index_sample = sorted(random.sample(list(index), self.sample_size)) self.incoherent = np.zeros((3, self.n_fft//2+1, self.buffer_size)) self.coherent = np.zeros((3, self.n_fft//2+1, self.buffer_size)) self.file[self.group_name].create_dataset( "freq", data=self.frequency_samples) @property def fft_resolution(self): """ Return the fft resolution in [Hz]. It is defined as the sampling frequency over the number of samples. """ return self.ring.f0/self.n_fft @property def signal_resolution(self): """ Return the signal resolution in [Hz]. It is defined as the inverse of the signal length. """ return 1/(self.ring.T0*self.save_every) @property def frequency_samples(self): """ Return the fft frequency samples in [Hz]. """ return rfftfreq(self.n_fft, self.ring.T0) def track(self, object_to_save): """ Save spectrum data. Parameters ---------- object_to_save : Beam or Bunch object """ skip = False if isinstance(object_to_save, Beam): if (object_to_save.mpi_switch == True): if object_to_save.mpi.bunch_num == self.bunch_number: bunch = object_to_save[object_to_save.mpi.bunch_num] else: skip = True else: bunch = object_to_save[self.bunch_number] elif isinstance(object_to_save, Bunch): bunch = object_to_save else: raise TypeError("object_to_save should be a Beam or Bunch object.") if skip is False: for key, value in self.track_dict.items(): self.positions[value, :, self.save_count] = bunch[key][self.index_sample] self.mean[:, self.save_count] = bunch.mean[self.mean_index] self.save_count += 1 if self.track_count > 0 and self.track_count % self.save_every == 0: self.to_buffer(bunch) self.save_count = 0 self.track_count += 1 def to_buffer(self, bunch): """ A method to hold saved data before writing it to the output file. """ self.time[self.buffer_count] = self.track_count for key, value in self.track_dict.items(): incoherent, mean_incoherent, std_incoherent = self.get_incoherent_spectrum(self.positions[value,:,:]) self.incoherent[self.store_dict[key],:,self.buffer_count] = incoherent self.mean_incoherent[self.store_dict[key],self.buffer_count] = mean_incoherent self.std_incoherent[self.store_dict[key],self.buffer_count] = std_incoherent self.coherent[self.store_dict[key],:,self.buffer_count] = self.get_coherent_spectrum(self.mean[value]) self.buffer_count += 1 if self.buffer_count == self.buffer_size: self.write() self.buffer_count = 0 def write(self): """ Write data from buffer to output file. """ self.file[self.group_name]["time"][self.write_count*self.buffer_size:( self.write_count+1)*self.buffer_size] = self.time self.file[self.group_name]["incoherent"][:,:, self.write_count * self.buffer_size:(self.write_count+1) * self.buffer_size] = self.incoherent self.file[self.group_name]["mean_incoherent"][:, self.write_count * self.buffer_size:(self.write_count+1) * self.buffer_size] = self.mean_incoherent self.file[self.group_name]["std_incoherent"][:, self.write_count * self.buffer_size:(self.write_count+1) * self.buffer_size] = self.std_incoherent self.file[self.group_name]["coherent"][:,:, self.write_count * self.buffer_size:(self.write_count+1) * self.buffer_size] = self.coherent self.file.flush() self.write_count += 1 def get_incoherent_spectrum(self, positions): """ Compute the incoherent spectrum i.e. the average of the absolute value of the FT of the position of every particule of the bunch. Returns ------- incoherent : array Bunch incoherent spectrum. mean_incoherent : float Mean frequency of the maximum of each individual particle spectrum in [Hz]. std_incoherent : float Standard deviation of the frequency of the maximum of each individual particle spectrum in [Hz]. """ fourier = rfft(positions, n=self.n_fft) fourier_abs = np.abs(fourier) max_array = np.argmax(fourier_abs,axis=1) freq_array = self.frequency_samples[max_array] mean_incoherent = np.mean(freq_array) std_incoherent = np.std(freq_array) incoherent = np.mean(fourier_abs, axis=0) return incoherent, mean_incoherent, std_incoherent def get_coherent_spectrum(self, mean): """ Compute the coherent spectrum i.e. the absolute value of the FT of the mean position of the bunch. Returns ------- coherent : array Bunch coherent spectrum. """ coherent = np.abs(rfft(mean, n=self.n_fft)) return coherent class BeamSpectrumMonitor(Monitor): """ Monitor coherent beam spectrum. Parameters ---------- ring : Synchrotron object save_every : int or float Set the frequency of the save. The spectrums are computed every save_every call of the montior. buffer_size : int or float Size of the save buffer. total_size : int or float Total size of the save. The following relationships between the parameters must exist: total_size % buffer_size == 0 number of call to track / save_every == total_size - 1 dim : str, optional Dimensions in which the spectrums have to be computed. Can be: - "all" - "tau" - "x" - "y" - "xy" or "yx" - "xtau" or "taux" - "ytau" or "tauy" n_fft : int or float, optional The number of points used for FFT computation, if n_fft is bigger than save_every zero-padding is applied. If None, save_every is used. file_name : string, optional Name of the HDF5 where the data will be stored. Must be specified the first time a subclass of Monitor is instancied and must be None the following times. mpi_mode : bool, optional If True, open the HDF5 file in parallel mode, which is needed to allow several cores to write in the same file at the same time. If False, open the HDF5 file in standard mode. Attributes ---------- fft_resolution : float Return the fft resolution in [Hz]. signal_resolution : float Return the signal resolution in [Hz]. frequency_samples : array of float Return the fft frequency samples in [Hz]. Methods ------- track(bunch): Save spectrum data. """ def __init__(self, ring, save_every, buffer_size, total_size, dim="all", n_fft=None, file_name=None, mpi_mode=False): if n_fft is None: self.n_fft = int(save_every) else: self.n_fft = int(n_fft) self.store_dict = {"x":0,"y":1,"tau":2} if dim == "all": self.track_dict = {"x":0,"y":1,"tau":2} self.mean_index = [True, False, True, False, True, False] elif dim == "tau": self.track_dict = {"tau":0} self.mean_index = [False, False, False, False, True, False] elif dim == "x": self.track_dict = {"x":0} self.mean_index = [True, False, False, False, False, False] elif dim == "y": self.track_dict = {"y":0} self.mean_index = [False, False, True, False, False, False] elif dim == "xy" or dim == "yx": self.track_dict = {"x":0,"y":1} self.mean_index = [True, False, True, False, False, False] elif dim == "xtau" or dim == "taux": self.track_dict = {"x":0,"tau":1} self.mean_index = [True, False, False, False, True, False] elif dim == "ytau" or dim == "tauy": self.track_dict = {"y":0,"tau":1} self.mean_index = [False, False, True, False, True, False] else: raise ValueError("dim is not correct.") self.size_list = len(self.track_dict) self.ring = ring group_name = "BeamSpectrum" dict_buffer = {"coherent":(3, self.n_fft//2+1, buffer_size)} dict_file = {"coherent":(3, self.n_fft//2+1, total_size)} self.monitor_init(group_name, save_every, buffer_size, total_size, dict_buffer, dict_file, file_name, mpi_mode) self.dict_buffer = dict_buffer self.dict_file = dict_file self.save_count = 0 self.mean = np.zeros((self.size_list, ring.h, self.save_every)) self.coherent = np.zeros((3, self.n_fft//2+1, self.buffer_size)) self.file[self.group_name].create_dataset( "freq", data=self.frequency_samples) @property def fft_resolution(self): """ Return the fft resolution in [Hz]. It is defined as the sampling frequency over the number of samples. """ return self.ring.f1/self.n_fft @property def signal_resolution(self): """ Return the signal resolution in [Hz]. It is defined as the inverse of the signal length. """ return 1/(self.ring.T0*self.save_every) @property def frequency_samples(self): """ Return the fft frequency samples in [Hz]. """ return rfftfreq(self.n_fft, self.ring.T1) def track(self, beam): """ Save mean data. Parameters ---------- beam : Beam object """ if (beam.mpi_switch == True): bunch_num = beam.mpi.bunch_num bunch = beam[bunch_num] self.mean[:, bunch_num, self.save_count] = bunch.mean[self.mean_index] else: self.mean[:, :, self.save_count] = beam.bunch_mean[self.mean_index,:] self.save_count += 1 if self.save_count == self.save_every: self.to_buffer(beam) self.save_count = 0 self.track_count += 1 def to_buffer(self, beam): """ A method to hold saved data before writing it to the output file. """ self.time[self.buffer_count] = self.track_count for key, value in self.track_dict.items(): if (beam.mpi_switch == True): data_core = self.mean[value, beam.mpi.bunch_num, :] full_data = beam.mpi.comm.allgather(data_core) data = np.reshape(full_data, (-1), 'F') else: data = np.reshape(self.mean[value, :, :], (-1), 'F') self.coherent[self.store_dict[key],:,self.buffer_count] = self.get_beam_spectrum(data) self.buffer_count += 1 if self.buffer_count == self.buffer_size: self.write() self.buffer_count = 0 def write(self): """ Write data from buffer to output file. """ self.file[self.group_name]["time"][self.write_count*self.buffer_size:( self.write_count+1)*self.buffer_size] = self.time self.file[self.group_name]["coherent"][:,:, self.write_count * self.buffer_size:(self.write_count+1) * self.buffer_size] = self.coherent self.file.flush() self.write_count += 1 def get_beam_spectrum(self, mean): """ Compute the beam coherent spectrum i.e. the absolute value of the FT of the mean position of every bunch. Returns ------- coherent : array The beam coherent spectrum. """ coherent = np.abs(rfft(mean, n=self.n_fft)) return coherent class CavityMonitor(Monitor): """ Monitor a CavityResonator object and save attributes (mean, std, emit and current). Parameters ---------- cavity_name : str Name of the CavityResonator object to monitor. ring : Synchrotron object save_every : int or float Set the frequency of the save. The data is saved every save_every call of the montior. buffer_size : int or float Size of the save buffer. total_size : int or float Total size of the save. The following relationships between the parameters must exist: total_size % buffer_size == 0 number of call to track / save_every == total_size file_name : string, optional Name of the HDF5 where the data will be stored. Must be specified the first time a subclass of Monitor is instancied and must be None the following times. mpi_mode : bool, optional If True, open the HDF5 file in parallel mode, which is needed to allow several cores to write in the same file at the same time. If False, open the HDF5 file in standard mode. Methods ------- track(beam, cavity) Save data """ def __init__(self, cavity_name, ring, save_every, buffer_size, total_size, file_name=None, mpi_mode=False): self.cavity_name = cavity_name self.ring = ring group_name = cavity_name dict_buffer = {"cavity_phasor_record":(ring.h, buffer_size,), "beam_phasor_record":(ring.h, buffer_size,), "detune":(buffer_size,)} dict_file = {"cavity_phasor_record":(ring.h, total_size,), "beam_phasor_record":(ring.h, total_size,), "detune":(total_size,)} dict_dtype = {"cavity_phasor_record":complex, "beam_phasor_record":complex, "detune":float} self.monitor_init(group_name, save_every, buffer_size, total_size, dict_buffer, dict_file, file_name, mpi_mode, dict_dtype) self.dict_buffer = dict_buffer self.dict_file = dict_file def track(self, beam, cavity): """ Save data Parameters ---------- beam : Beam object cavity : CavityResonator object """ if self.track_count % self.save_every == 0: if isinstance(cavity, CavityResonator): if beam.mpi_switch == False: self.to_buffer(cavity) elif beam.mpi.rank == 0: self.to_buffer(cavity) else: pass else: raise TypeError("cavity should be a CavityResonator object.") self.track_count += 1