diff --git a/tracking/monitors/plotting.py b/tracking/monitors/plotting.py index 0c648544ec5c7a4f9749e4ef0c3022cf79bc308b..3d57baf020ff9f625bd33642e4d290d330ee72cc 100644 --- a/tracking/monitors/plotting.py +++ b/tracking/monitors/plotting.py @@ -58,16 +58,15 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean", for filename in filenames: file = hp.File(filename, "r") - data = file["Beam"] - time = np.array(data["time"]) + time = np.array(file["Beam"]["time"]) + data = np.array(file["Beam"][dataset]) if x_var == "time": x = time x_label = "Number of turns" - bunch_index = data["current"][:,0] != 0 - + bunch_index = (file["Beam"]["current"][:,0] != 0).nonzero()[0] if dataset == "current": - y = np.nansum(data[dataset][bunch_index,:],0)*1e3 + y = np.nansum(data[bunch_index,:],0)*1e3 y_label = "Total current (mA)" elif dataset == "emit": dimension_dict = {"x":0, "y":1, "s":2} @@ -76,9 +75,9 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean", "$\\epsilon_{y}$ (m.rad)", "$\\epsilon_{s}$ (m.rad)"] if stat_var == "mean": - y = np.nanmean(data[dataset][axis,bunch_index,:],0) + y = np.nanmean(data[axis,bunch_index,:],0) elif stat_var == "std": - y = np.nanstd(data[dataset][axis,bunch_index,:],0) + y = np.nanstd(data[axis,bunch_index,:],0) y_label = stat_var + " " + label[axis] elif dataset == "mean" or dataset == "std": dimension_dict = {"x":0, "xp":1, "y":2, "yp":3, "tau":4, @@ -88,22 +87,23 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean", label = ["x (um)", "x' ($\\mu$rad)", "y (um)", "y' ($\\mu$rad)", "$\\tau$ (ps)", "$\\delta$"] if stat_var == "mean": - y = np.nanmean(data[dataset][axis,bunch_index,:],0)*scale[axis] + y = np.nanmean(data[axis,bunch_index,:],0)*scale[axis] elif stat_var == "std": - y = np.nanstd(data[dataset][axis,bunch_index,:],0)*scale[axis] + y = np.nanstd(data[axis,bunch_index,:],0)*scale[axis] label_sup = {"mean":"mean of ", "std":"std of "} y_label = label_sup[stat_var] + dataset + " " + label[axis] elif x_var == "index": - h = len(data["mean"][0,:,0]) + h = len(file["Beam"]["mean"][0,:,0]) x = np.arange(h) x_label = "Bunch index" if turn is None: idx = -1 else: idx = np.where(time == int(turn)) + if dataset == "current": - y = data["current"][:,idx]*1e3 + y = data[:,idx]*1e3 y_label = "Bunch current (mA)" elif dataset == "emit": dimension_dict = {"x":0, "y":1, "s":2} @@ -111,7 +111,7 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean", label = ["$\\epsilon_{x}$ (m.rad)", "$\\epsilon_{y}$ (m.rad)", "$\\epsilon_{s}$ (m.rad)"] - y = data["emit"][axis,:,idx] + y = data[axis,:,idx] y_label = label[axis] elif dataset == "mean" or dataset == "std": dimension_dict = {"x":0, "xp":1, "y":2, "yp":3, "tau":4, @@ -120,10 +120,12 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean", scale = [1e6, 1e6, 1e6, 1e6, 1e12, 1] label = ["x (um)", "x' ($\\mu$rad)", "y (um)", "y' ($\\mu$rad)", "$\\tau$ (ps)", "$\\delta$"] - y = data[dataset][axis,:,idx]*scale[axis] + y = data[axis,:,idx]*scale[axis] y_label = dataset + " " + label[axis] else: raise ValueError("x_var should be time or index") + + y = np.squeeze(y) ax.plot(x, y) ax.set_xlabel(x_label) @@ -428,19 +430,21 @@ def plot_profiledata(filename, bunch_number, dimension="tau", start=0, file = hp.File(filename, "r") path = file['ProfileData_{0}'.format(bunch_number)] - l_bound = path["{0}_bin".format(dimension)] + l_bound = np.array(path["{0}_bin".format(dimension)]) + data = np.array(path[dimension]) + time = np.array(path["time"]) if stop is None: - stop = path['time'][-1] - elif stop not in path['time']: + stop = time[-1] + elif stop not in time: raise ValueError("stop not found. Choose from {0}" - .format(path['time'][:])) + .format(time[:])) - if start not in path['time']: + if start not in time: raise ValueError("start not found. Choose from {0}" - .format(path['time'][:])) + .format(time[:])) - save_every = path['time'][1] - path['time'][0] + save_every = time[1] - time[0] if step is None: step = save_every @@ -455,9 +459,9 @@ def plot_profiledata(filename, bunch_number, dimension="tau", start=0, "$\\tau$ (ps)", "$\\delta$"] num = int((stop - start)/step) - n_bin = len(path[dimension][:,0]) + n_bin = len(data[:,0]) - start_index = np.where(path['time'][:] == start)[0][0] + start_index = np.where(time[:] == start)[0][0] x_var = np.zeros((num+1,n_bin)) turn_index_array = np.zeros((num+1,)) @@ -471,16 +475,16 @@ def plot_profiledata(filename, bunch_number, dimension="tau", start=0, fig, ax = plt.subplots() for i in range(num+1): ax.plot(x_var[i]*scale[dimension_dict[dimension]], - path[dimension][:,turn_index_array[i]], - label="turn {0}".format(path['time'][turn_index_array[i]])) + data[:,turn_index_array[i]], + label="turn {0}".format(time[turn_index_array[i]])) ax.set_xlabel(label[dimension_dict[dimension]]) ax.set_ylabel("number of macro-particles") ax.legend() if streak_plot is True: - turn = np.reshape(path['time'][turn_index_array], (num+1,1)) + turn = np.reshape(time[turn_index_array], (num+1,1)) y_var = np.ones((num+1,n_bin)) * turn - z_var = np.transpose(path[dimension][:,turn_index_array]) + z_var = np.transpose(data[:,turn_index_array]) fig2, ax2 = plt.subplots() cmap = mpl.cm.cool c = ax2.imshow(z_var, cmap=cmap, origin='lower' , aspect='auto', @@ -541,18 +545,19 @@ def plot_wakedata(filename, bunch_number, wake_type="Wlong", start=0, file = hp.File(filename, "r") path = file['WakePotentialData_{0}'.format(bunch_number)] + time = np.array(path["time"]) if stop is None: - stop = path['time'][-1] - elif stop not in path['time']: + stop = time[-1] + elif stop not in time: raise ValueError("stop not found. Choose from {0}" - .format(path['time'][:])) + .format(time[:])) - if start not in path['time']: + if start not in time: raise ValueError("start not found. Choose from {0}" - .format(path['time'][:])) + .format(time[:])) - save_every = path['time'][1] - path['time'][0] + save_every = time[1] -time[0] if step is None: step = save_every @@ -583,33 +588,35 @@ def plot_wakedata(filename, bunch_number, wake_type="Wlong", start=0, else: tau_name = "tau_" + wake_type + data = np.array(path[wake_type]) + num = int((stop - start)/step) - n_bin = len(path[wake_type][:,0]) + n_bin = len(data[:,0]) - start_index = np.where(path['time'][:] == start)[0][0] + start_index = np.where(time[:] == start)[0][0] x_var = np.zeros((num+1,n_bin)) - turn_index_array = np.zeros((num+1,)) + turn_index_array = np.zeros((num+1,), dtype=int) for i in range(num+1): - turn_index = start_index + i * step / save_every + turn_index = int(start_index + i * step / save_every) turn_index_array[i] = turn_index # construct an array of bin mids - x_var[i,:] = path[tau_name][:,turn_index] - + x_var[i,:] = np.array(path[tau_name])[:,turn_index] + if profile_plot is True: fig, ax = plt.subplots() for i in range(num+1): ax.plot(x_var[i]*1e12, - path[wake_type][:,turn_index_array[i]]*scale[dimension_dict[wake_type]], - label="turn {0}".format(path['time'][turn_index_array[i]])) + data[:,turn_index_array[i]]*scale[dimension_dict[wake_type]], + label="turn {0}".format(time[turn_index_array[i]])) ax.set_xlabel("$\\tau$ (ps)") ax.set_ylabel(label[dimension_dict[wake_type]]) ax.legend() if streak_plot is True: - turn = np.reshape(path['time'][turn_index_array], (num+1,1)) + turn = np.reshape(time[turn_index_array], (num+1,1)) y_var = np.ones((num+1,n_bin)) * turn - z_var = np.transpose(path[wake_type][:,turn_index_array]*scale[dimension_dict[wake_type]]) + z_var = np.transpose(data[:,turn_index_array]*scale[dimension_dict[wake_type]]) fig2, ax2 = plt.subplots() cmap = mpl.cm.cool c = ax2.imshow(z_var, cmap=cmap, origin='lower' , aspect='auto', @@ -1062,7 +1069,7 @@ def plot_cavitydata(filename, cavity_name, phasor="cavity", file = hp.File(filename, "r") cavity_data = file[cavity_name] - time = cavity_data["time"] + time = np.array(cavity_data["time"]) ph = {"cavity":0, "beam":1} labels = ["Cavity", "Beam"] @@ -1093,8 +1100,8 @@ def plot_cavitydata(filename, cavity_name, phasor="cavity", index = np.array(time) == turn ph = {"cavity":0, "beam":1} - data = [cavity_data["cavity_phasor_record"][:,index], - cavity_data["beam_phasor_record"][:,index]] + data = [np.array(cavity_data["cavity_phasor_record"])[:,index], + np.array(cavity_data["beam_phasor_record"])[:,index]] labels = ["Cavity", "Beam"] h=len(data[0])