diff --git a/mbtrack2/utilities/misc.py b/mbtrack2/utilities/misc.py index a8cb9704b569edc1f2a8d0469012592668696547..87cb942cef012e5e156a2245d5c5ac9a802c20ef 100644 --- a/mbtrack2/utilities/misc.py +++ b/mbtrack2/utilities/misc.py @@ -221,7 +221,8 @@ def yokoya_elliptic(x_radius, y_radius): small_semiaxis = x_radius large_semiaxis = y_radius - # Our equations are approximately valid only for qr (ratio) values less than or equal to 0.8. + # Our equations are approximately valid only for qr (ratio) values + # less than or equal to 0.8. qr_th = 0.8 F = np.sqrt(large_semiaxis**2 - small_semiaxis**2) mu_b = np.arccosh(large_semiaxis/F) @@ -305,14 +306,15 @@ def yokoya_elliptic(x_radius, y_radius): ff_values = np.array(function_ff(small_semiaxis_th, F_th, mu_b_th, ip, il)) L_values = np.array(function_L(mu_b_th, ip, il)) - coeff_long = np.where((ip == 0) & (il == 0), 0.25, np.where((ip == 0) | (il == 0), 0.5, 1.0)) + coeff_long = np.where( (ip == 0) & (il == 0), 0.25, + np.where((ip == 0) | (il == 0), 0.5, 1.0) ) coeff_quad = np.where(il == 0, 0.5, 1.0) - yoklong = np.sum(coeff_long * ff_values[0] * L_values[0]) - yokxdip = np.sum(ff_values[1] * L_values[1]) - yokydip = np.sum(ff_values[2] * L_values[2]) - yokxquad = -np.sum(coeff_quad * ff_values[3] * L_values[0]) - yokyquad = -yokxquad + yoklong_th = np.sum(coeff_long * ff_values[0] * L_values[0]) + yokxdip_th = np.sum(ff_values[1] * L_values[1]) + yokydip_th = np.sum(ff_values[2] * L_values[2]) + yokxquad_th = -np.sum(coeff_quad * ff_values[3] * L_values[0]) + yokyquad_th = -yokxquad_th if y_radius > x_radius: yokxdip_th, yokydip_th = yokydip_th, yokxdip_th @@ -344,7 +346,8 @@ def yokoya_elliptic(x_radius, y_radius): ff_values = np.array(function_ff(small_semiaxis, F, mu_b, ip, il)) L_values = np.array(function_L(mu_b, ip, il)) - coeff_long = np.where((ip == 0) & (il == 0), 0.25, np.where((ip == 0) | (il == 0), 0.5, 1.0)) + coeff_long = np.where( (ip == 0) & (il == 0), 0.25, + np.where((ip == 0) | (il == 0), 0.5, 1.0) ) coeff_quad = np.where(il == 0, 0.5, 1.0) yoklong = np.sum(coeff_long * ff_values[0] * L_values[0])