diff --git a/tracking/element.py b/tracking/element.py index 4fa5aea90d2c314fffa6ca09356366e166e3d261..de37ca8c810f4525793a2ecaab5b8dac3716c1dd 100644 --- a/tracking/element.py +++ b/tracking/element.py @@ -154,10 +154,15 @@ class TransverseMap(Element): self.dispersion = self.ring.optics.local_dispersion self.phase_advance = self.ring.tune[0:2]*2*np.pi - if self.ring.adts.all() == 0: - self.adts_option = False - else: + if self.ring.adts is not None: self.adts_option = True + self.adts_poly = np.array([np.poly1d(self.ring.adts[0]), + np.poly1d(self.ring.adts[1]), + np.poly1d(self.ring.adts[2]), + np.poly1d(self.ring.adts[3])]) + + else: + self.adts_option = False @Element.parallel def track(self, bunch): @@ -174,10 +179,10 @@ class TransverseMap(Element): # Compute phase advance which depends on energy via chromaticity and ADTS if self.adts_option is True: phase_advance_x = self.phase_advance[0]*(1+self.ring.chro[0]*bunch["delta"]+ - self.ring.adts[0](bunch['x'])+self.ring.adts[2](bunch['y'])) + self.adts_poly[0](bunch['x'])+self.adts_poly[2](bunch['y'])) phase_advance_y = self.phase_advance[1]*(1+self.ring.chro[1]*bunch["delta"]+ - self.ring.adts[1](bunch['x'])+self.ring.adts[3](bunch['y'])) + self.adts_poly[1](bunch['x'])+self.adts_poly[3](bunch['y'])) else: phase_advance_x = self.phase_advance[0]*(1+self.ring.chro[0]*bunch["delta"]) diff --git a/tracking/synchrotron.py b/tracking/synchrotron.py index 093b27488b88438969b950fafff49e25ecb53acd..34cca93c06d8085ba2ca2c00e2a2fac5a5254812 100644 --- a/tracking/synchrotron.py +++ b/tracking/synchrotron.py @@ -44,6 +44,19 @@ class Synchrotron: Horizontal and vertical (non-normalized) chromaticities. U0 : float, optional Energy loss per turn in [eV]. + adts : array of shape (4,) or None, optional + Array that contains arrays of polynomial's coefficients, in decreasing + powers, used to determine Amplitude-Dependent Tune Shifts (ADTS). + The order of the elements strictly needs to be + [coef_xx, coef_yx, coef_xy, coef_yy], where x and y denote the horizontal + and the vertical plane, respectively, and coef_PQ means the polynomial's + coefficients of the ADTS in plane P due to the offset in plane Q. + + For example, if the tune shift in y due to the offset x is characterized + by the equation dQy(x) = 3*x**2 + 2*x + 1, then coef_yx takes the form + np.array([3, 2, 1]). + + Use None, to exclude the ADTS calculation. Attributes ----------