diff --git a/mbtrack2/tracking/monitors/monitors.py b/mbtrack2/tracking/monitors/monitors.py index 85bbf2a06378d5c8f66d985fd7696371b10ada12..dc6aecf89aa344e47f953ee201ac1101d05bd874 100644 --- a/mbtrack2/tracking/monitors/monitors.py +++ b/mbtrack2/tracking/monitors/monitors.py @@ -289,10 +289,10 @@ class BunchMonitor(Monitor): group_name = "BunchData_" + str(self.bunch_number) dict_buffer = {"mean":(6, buffer_size), "std":(6, buffer_size), "emit":(3, buffer_size), "current":(buffer_size,), - "cs_invariant":(2, buffer_size)} + "cs_invariant":(3, buffer_size)} dict_file = {"mean":(6, total_size), "std":(6, total_size), "emit":(3, total_size), "current":(total_size,), - "cs_invariant":(2, total_size)} + "cs_invariant":(3, total_size)} self.monitor_init(group_name, save_every, buffer_size, total_size, dict_buffer, dict_file, file_name, mpi_mode) @@ -442,12 +442,12 @@ class BeamMonitor(Monitor): "std" : (6, h, buffer_size), "emit" : (3, h, buffer_size), "current" : (h, buffer_size), - "cs_invariant" : (2, h, buffer_size)} + "cs_invariant" : (3, h, buffer_size)} dict_file = {"mean" : (6, h, total_size), "std" : (6, h, total_size), "emit" : (3, h, total_size), "current" : (h, total_size), - "cs_invariant" : (2, h, total_size)} + "cs_invariant" : (3, h, total_size)} self.monitor_init(group_name, save_every, buffer_size, total_size, dict_buffer, dict_file, file_name, mpi_mode) diff --git a/mbtrack2/tracking/monitors/plotting.py b/mbtrack2/tracking/monitors/plotting.py index 4dfc2b3a4860e7c89e83183bc7b9f709f2f2b22f..6bc498ea640a339d5944e7b3cc93251aa742b0fa 100644 --- a/mbtrack2/tracking/monitors/plotting.py +++ b/mbtrack2/tracking/monitors/plotting.py @@ -26,7 +26,7 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean", dimension : str The dimension of the dataset to plot: for "emit", dimension = {"x","y","s"}, - for "cs_invariant", dimension = {"x","y"}, + for "cs_invariant", dimension = {"x","y","s"}, for "mean" and "std", dimension = {"x","xp","y","yp","tau","delta"}. not used if "current". The default is "tau". @@ -78,9 +78,9 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean", y = np.nanstd(data[axis,bunch_index,:],0) y_label = stat_var + " " + label[axis] elif dataset == "cs_invariant": - dimension_dict = {"x":0, "y":1} + dimension_dict = {"x":0, "y":1, "s":2} axis = dimension_dict[dimension] - label = ['$J_x$ (m)', '$J_y$ (m)'] + label = ['$J_x$ (m)', '$J_y$ (m)', '$J_s$ (s)'] if stat_var == "mean": y = np.nanmean(data[axis,bunch_index,:],0) elif stat_var == "std": @@ -123,9 +123,9 @@ def plot_beamdata(filenames, dataset="mean", dimension="tau", stat_var="mean", y = data[axis,:,idx] y_label = label[axis] elif dataset == "cs_invariant": - dimension_dict = {"x":0, "y":1} + dimension_dict = {"x":0, "y":1, "s":2} axis = dimension_dict[dimension] - label = ['$J_x$ (m)', '$J_y$ (m)'] + label = ['$J_x$ (m)', '$J_y$ (m)', '$J_s$ (s)'] y = data[axis,:,idx] y_label = label[axis] elif dataset == "mean" or dataset == "std": @@ -165,7 +165,7 @@ def streak_beamdata(filename, dataset="mean", dimension="tau", cm_lim=None): dimension : str The dimension of the dataset to plot: for "emit", dimension = {"x","y","s"}, - for "cs_invariant", dimension = {"x","y"}, + for "cs_invariant", dimension = {"x","y","s"}, for "mean" and "std", dimension = {"x","xp","y","yp","tau","delta"}. not used if "current". The default is "tau". @@ -202,9 +202,9 @@ def streak_beamdata(filename, dataset="mean", dimension="tau", cm_lim=None): z_label = label[axis] title = z_label elif dataset == "cs_invariant": - dimension_dict = {"x":0, "y":1} + dimension_dict = {"x":0, "y":1, "s":2} axis = dimension_dict[dimension] - label = ['$J_x$ (m)', '$J_y$ (m)'] + label = ['$J_x$ (m)', '$J_y$ (m)', '$J_s$ (s)'] z = np.array(data["cs_invariant"][axis,:,:]).T z_label = label[axis] title = z_label @@ -261,7 +261,7 @@ def plot_bunchdata(filenames, bunch_number, dataset, dimension="x", The dimension of the dataset to plot. Use "None" for "current", otherwise use the following : for "emit", dimension = {"x","y","s"}, - for "cs_invariant", dimension = {"x","y"}, + for "cs_invariant", dimension = {"x","y","s"}, for "mean" and "std", dimension = {"x","xp","y","yp","tau","delta"}, for "action", dimension = {"x","y"}. legend : list of str, optional @@ -320,10 +320,10 @@ def plot_bunchdata(filenames, bunch_number, dataset, dimension="x", label = label_list[axis_index] elif dataset == "cs_invariant": - dimension_dict = {"x":0, "y":1} + dimension_dict = {"x":0, "y":1, "s":2} axis_index = dimension_dict[dimension] y_var = file[group][dataset][axis_index] - label_list = ['$J_x$ (m)', '$J_y$ (m)'] + label_list = ['$J_x$ (m)', '$J_y$ (m)', '$J_s$ (s)'] label = label_list[axis_index] x_axis = file[group]["time"][:] diff --git a/mbtrack2/tracking/particles.py b/mbtrack2/tracking/particles.py index 5c900bac11c0eff3566ce4791269d804a3148d3a..356fb3d564bca9b4e27f3cc4d04c107690bcb6e0 100644 --- a/mbtrack2/tracking/particles.py +++ b/mbtrack2/tracking/particles.py @@ -256,7 +256,10 @@ class Bunch: Jy = (self.ring.optics.local_gamma[1] * self['y']**2) + \ (2*self.ring.optics.local_alpha[1] * self['y']*self['yp']) + \ (self.ring.optics.local_beta[1] * self['yp']**2) - return np.array((np.mean(Jx),np.mean(Jy))) + Js = (self.ring.long_gamma * self['tau']**2) + \ + (2*self.ring.long_alpha * self['tau']*self['delta']) + \ + (self.ring.long_beta * self['delta']**2) + return np.array((np.mean(Jx), np.mean(Jy), np.mean(Js))) def init_gaussian(self, cov=None, mean=None, **kwargs): """ @@ -779,7 +782,7 @@ class Beam: def bunch_cs(self): """Return an array with the average Courant-Snyder invariant for each bunch""" - bunch_cs = np.zeros((2,self.ring.h)) + bunch_cs = np.zeros((3,self.ring.h)) for idx, bunch in enumerate(self.not_empty): index = self.bunch_index[idx] bunch_cs[:,index] = bunch.cs_invariant diff --git a/mbtrack2/tracking/synchrotron.py b/mbtrack2/tracking/synchrotron.py index 236f34e68f39a49ddedac69593d4a8ba3e03e6be..d5c5d0eaa835a92f6bc5e9bba8ddb9a86e56e4e5 100644 --- a/mbtrack2/tracking/synchrotron.py +++ b/mbtrack2/tracking/synchrotron.py @@ -82,11 +82,21 @@ class Synchrotron: Relativistic Lorentz gamma. beta : float Relativistic Lorentz beta. + long_alpha : float + Longitudinal alpha Twiss parameter at the tracking location. + Initialized at zero. + long_beta : float + Longitudinal beta Twiss parameter at the tracking location in [s]. + Initialized at zero. + long_gamma : float + Longitudinal gamma Twiss parameter at the tracking location in [s-1]. + Initialized at zero. + Methods ------- - synchrotron_tune(Vrf) - Compute synchrotron tune from RF voltage. + synchrotron_tune(V) + Compute the (unperturbed) synchrotron tune from main RF voltage. sigma(position) Return the RMS beam size at equilibrium in [m]. eta(delta) @@ -100,11 +110,17 @@ class Synchrotron: componenet from AT lattice. get_mcf_order() Compute momentum compaction factor up to 3rd order from AT lattice. + get_longitudinal_twiss(V) + Compute the longitudinal Twiss parameters and the synchrotron tune for + single or multi-harmonic RF systems. """ def __init__(self, h, optics, particle, **kwargs): self._h = h self.particle = particle self.optics = optics + self.long_alpha = 0 + self.long_beta = 0 + self.long_gamma = 0 if self.optics.use_local_values == False: self.L = kwargs.get('L', self.optics.lattice.circumference) @@ -317,23 +333,24 @@ class Synchrotron: self.optics.dispersion(position)[3]**2*self.sigma_delta**2)**0.5 return sigma - def synchrotron_tune(self, Vrf): + def synchrotron_tune(self, V): """ - Compute synchrotron tune from RF voltage + Compute the (unperturbed) synchrotron tune from main RF voltage. Parameters ---------- - Vrf : float + V : float Main RF voltage in [V]. - + Returns ------- tuneS : float Synchrotron tune. + """ - phase = np.pi - np.arcsin(self.U0 / Vrf) - tuneS = np.sqrt( - (Vrf / self.E0) * (self.h * self.ac) / (2*np.pi) - * np.cos(phase) ) + Vsum = V * np.sin(np.arccos(self.U0/V)) + phi = np.arccos(1 - self.eta(0) * np.pi * self.h / self.E0 * Vsum) + tuneS = phi / (2 * np.pi) return tuneS def get_adts(self): @@ -403,3 +420,75 @@ class Synchrotron: self.mcf_order = pvalue else: return pvalue + + def get_longitudinal_twiss(self, V, phase=None, harmonics=None, add=True): + """ + Compute the longitudinal Twiss parameters and the synchrotron tune for + single or multi-harmonic RF systems. + + Hypthesis: + - Use the linear approximation (tau ~ 0). + - For higher haromics only, cos(phi) ~ 0 must be true. + + Parameters + ---------- + V : float or array-like of float + RF voltage in [V]. + phase : float or array-like of float, optional + RF phase using cosine convention in [rad]. + Default is None. + harmonics : int or array-like of int, optional + Harmonics of the cavities to consider. + Default is None. + add : bool, optional + If True, + + Usage + ----- + - If a single voltage value is given, assume a single RF system set at + the synchronous phase. + - If a single pair of voltage/phase value is given, assume a single RF + system at this setting. + - Otherwise, compute the synchrotron tune for a multi-harmonic RF + system. + + Returns + ------- + tuneS : float + Synchrotron tune in the linear approximation. + long_alpha : float + Longitudinal alpha Twiss parameter at the tracking location. + long_beta : float + Longitudinal beta Twiss parameter at the tracking location in [s]. + long_gamma : float + Longitudinal gamma Twiss parameter at the tracking location in [s-1]. + """ + + if isinstance(V, float) or isinstance(V, int): + V = [V] + if phase is None: + phase = [np.arccos(self.U0/V[0])] + elif isinstance(phase, float) or isinstance(phase, int): + phase = [phase] + if harmonics is None: + harmonics = [1] + + if not (len(V) == len(phase) == len(harmonics)): + raise ValueError("You must provide array of the same length for" + " V, phase and harmonics") + + Vsum = 0 + for i in range(len(V)): + Vsum += harmonics[i] * V[i] * np.sin(phase[i]) + phi = np.arccos(1 - self.eta(0) * np.pi * self.h / self.E0 * Vsum) + long_alpha = - self.eta(0) * np.pi * self.h / (self.E0 * np.sin(phi)) * Vsum + long_beta = self.eta(0) * self.T0 / np.sin(phi) + long_gamma = self.omega1 * Vsum / (self.E0 * np.sin(phi)) + tuneS = phi / (2 * np.pi) + if add: + self.tuneS = tuneS + self.long_alpha = long_alpha + self.long_beta = long_beta + self.long_gamma = long_gamma + else: + return tuneS, long_alpha, long_beta, long_gamma \ No newline at end of file