From 081815713056d7a017d14f92e2b4a2b32ab7fe83 Mon Sep 17 00:00:00 2001 From: Alexis Gamelin <alexis.gamelin@synchrotron-soleil.fr> Date: Sat, 6 Apr 2024 22:44:04 +0200 Subject: [PATCH] BeamLoadingEquilibrium on a grid --- mbtrack2/utilities/beamloading.py | 116 ++++++++++++++---------------- 1 file changed, 53 insertions(+), 63 deletions(-) diff --git a/mbtrack2/utilities/beamloading.py b/mbtrack2/utilities/beamloading.py index 19e51e9..cfd3548 100644 --- a/mbtrack2/utilities/beamloading.py +++ b/mbtrack2/utilities/beamloading.py @@ -6,18 +6,14 @@ Module where the BeamLoadingEquilibrium class is defined. import matplotlib.pyplot as plt import numpy as np from scipy.constants import c -from scipy.integrate import quad +from scipy.integrate import trapz from scipy.optimize import root - +from mbtrack2.utilities.spectrum import gaussian_bunch class BeamLoadingEquilibrium(): """Class used to compute beam equilibrium profile for a given storage ring and a list of RF cavities of any harmonic. The class assumes an uniform - filling of the storage ring. Based on an extension of [1]. - - [1] Venturini, M. (2018). Passive higher-harmonic rf cavities with general - settings and multibunch instabilities in electron storage rings. - Physical Review Accelerators and Beams, 21(11), 114404. + filling of the storage ring. Based on [1] which is an extension of [2]. Parameters ---------- @@ -30,8 +26,20 @@ class BeamLoadingEquilibrium(): PHI : list of form factor phase B1 : lower intergration boundary B2 : upper intergration boundary + N : int or float, optinal + Number of points used for longitudinal grid. + Default is 1000. + + References + ---------- + [1] Gamelin, A., & Yamamoto, N. (2021). Equilibrium bunch density + distribution with multiple active and passive RF cavities. + IPAC'21 (MOPAB069). + [2] Venturini, M. (2018). Passive higher-harmonic rf cavities with general + settings and multibunch instabilities in electron storage rings. + Physical Review Accelerators and Beams, 21(11), 114404. + """ - def __init__(self, ring, cavity_list, @@ -40,7 +48,8 @@ class BeamLoadingEquilibrium(): F=None, PHI=None, B1=-0.2, - B2=0.2): + B2=0.2, + N=1000): self.ring = ring self.cavity_list = cavity_list self.I0 = I0 @@ -57,7 +66,10 @@ class BeamLoadingEquilibrium(): self.B1 = B1 self.B2 = B2 self.mpi = False - self.__version__ = "1.0" + self.N = N + self.z0 = np.linspace(self.B1, self.B2, self.N) + self.tau0 = self.z0/c + self.rho0 = gaussian_bunch(self.tau0, self.ring.sigma_0) # Define constants for scaled potential u(z) self.u0 = self.ring.U0 / (self.ring.ac * self.ring.sigma_delta**2 * @@ -65,6 +77,11 @@ class BeamLoadingEquilibrium(): self.ug = np.zeros((self.n_cavity, )) self.ub = np.zeros((self.n_cavity, )) self.update_potentials() + + def update_rho(self): + uexp_vals = self.uexp(self.z0) + A = trapz(uexp_vals, x=self.z0) + self.rho0 = uexp_vals / A def update_potentials(self): """Update potentials with cavity and ring data.""" @@ -90,9 +107,8 @@ class BeamLoadingEquilibrium(): def center_of_mass(self): """Return center of mass position in [s]""" - z0 = np.linspace(self.B1, self.B2, 1000) - rho = self.rho(z0) - CM = np.average(z0, weights=rho) + self.update_rho() + CM = np.average(self.z0, weights=self.rho0) return CM / c def u(self, z): @@ -122,12 +138,12 @@ class BeamLoadingEquilibrium(): def uexp(self, z): return np.exp(-1 * self.u(z)) - + def integrate_func(self, f, g): """Return Integral[f*g]/Integral[f] between B1 and B2""" - A = quad(lambda x: f(x) * g(x), self.B1, self.B2) - B = quad(f, self.B1, self.B2) - return A[0] / B[0] + A = trapz(f*g, x=self.z0) + B = trapz(f, x=self.z0) + return A / B def to_solve(self, x, CM=True): """System of non-linear equation to solve to find the form factors F @@ -158,12 +174,12 @@ class BeamLoadingEquilibrium(): cavity = self.cavity_list[i] res[2 * i] = self.F[i] * np.cos(self.PHI[i]) - self.integrate_func( - lambda y: self.uexp(y), - lambda y: np.cos(self.ring.k1 * cavity.m * y)) + self.uexp(self.z0), + np.cos(self.ring.k1 * cavity.m * self.z0)) res[2*i + 1] = self.F[i] * np.sin(self.PHI[i]) - self.integrate_func( - lambda y: self.uexp(y), - lambda y: np.sin(self.ring.k1 * cavity.m * y)) + self.uexp(self.z0), + np.sin(self.ring.k1 * cavity.m * self.z0)) # Factor 1e-8 or 1e12 for better convergence if CM is True: res[self.n_cavity * 2] = self.center_of_mass() * 1e12 @@ -175,27 +191,17 @@ class BeamLoadingEquilibrium(): cavity = self.cavity_list[i] res[2 * i] = self.F[i] * np.cos(self.PHI[i]) - self.integrate_func( - lambda y: self.uexp(y), - lambda y: np.cos(self.ring.k1 * cavity.m * y)) + self.uexp(self.z0), + np.cos(self.ring.k1 * cavity.m * self.z0)) res[2*i + 1] = self.F[i] * np.sin(self.PHI[i]) - self.integrate_func( - lambda y: self.uexp(y), - lambda y: np.sin(self.ring.k1 * cavity.m * y)) + self.uexp(self.z0), + np.sin(self.ring.k1 * cavity.m * self.z0)) return res - def rho(self, z): - """Return bunch equilibrium profile at postion z""" - A = quad(lambda y: self.uexp(y), self.B1, self.B2) - return self.uexp(z) / A[0] - - def plot_rho(self, z1=None, z2=None): - """Plot the bunch equilibrium profile between z1 and z2""" - if z1 is None: - z1 = self.B1 - if z2 is None: - z2 = self.B2 - z0 = np.linspace(z1, z2, 1000) - plt.plot(z0 / c * 1e12, self.rho(z0)) + def plot_rho(self): + """Plot the bunch equilibrium profile""" + plt.plot(self.tau0 * 1e12, self.rho0) plt.xlabel(r"$\tau$ [ps]") plt.title("Equilibrium bunch profile") @@ -231,38 +237,22 @@ class BeamLoadingEquilibrium(): Vtot += cavity.deltaVRF(z, self.I0, self.F[i], self.PHI[i]) return Vtot - def plot_dV(self, z1=None, z2=None): - """Plot the derivative of RF system total voltage between z1 and z2""" - if z1 is None: - z1 = self.B1 - if z2 is None: - z2 = self.B2 - z0 = np.linspace(z1, z2, 1000) - plt.plot(z0, self.dV(z0)) + def plot_dV(self): + """Plot the derivative of RF system total voltage""" + plt.plot(self.z0, self.dV(self.z0)) plt.xlabel("z [m]") plt.ylabel("Total RF voltage (V)") - def plot_voltage(self, z1=None, z2=None): + def plot_voltage(self): """Plot the RF system total voltage between z1 and z2""" - if z1 is None: - z1 = self.B1 - if z2 is None: - z2 = self.B2 - z0 = np.linspace(z1, z2, 1000) - plt.plot(z0, self.voltage(z0)) + plt.plot(self.z0, self.voltage(self.z0)) plt.xlabel("z [m]") plt.ylabel("Total RF voltage (V)") - def std_rho(self, z1=None, z2=None): + def std_rho(self): """Return the rms bunch equilibrium size in [m]""" - if z1 is None: - z1 = self.B1 - if z2 is None: - z2 = self.B2 - z0 = np.linspace(z1, z2, 1000) - values = self.rho(z0) - average = np.average(z0, weights=values) - variance = np.average((z0 - average)**2, weights=values) + average = np.average(self.z0, weights=self.rho0) + variance = np.average((self.z0 - average)**2, weights=self.rho0) return np.sqrt(variance) def beam_equilibrium(self, @@ -333,7 +323,7 @@ class BeamLoadingEquilibrium(): print("The algorithm has converged: " + str(sol.success)) if plot: - self.plot_rho(self.B1 / 4, self.B2 / 4) + self.plot_rho() return sol -- GitLab